Statistical Defaults and Paraconsistency”

Gregory R. Wheeler
Center for Research in Artificial Intelligence (CENTRIA)
Department of Informatics, New University of Lisbon
2825-114 Caparica, Portugal
greg@centria.fct.unl.pt

December 19, 2002

Abstract

This paper discusses the relationship between the property of paracon-
sistency and Statistical Default Logic, a nonmonotonic logic that models
common inference forms found in classical statistical inference such as
hypothesis testing and the estimation of a population’s mean, variance
and proportions. Statistical Default Logic is paraconsistent in the sense
that a set of default inference forms may induce an inconsistent set of
conclusions yet not, by that fact alone, trivialize the statistical default
consequence relation. The paper also clarifies a distinction between the
studies of implication, reasoning and inference. This distinction is useful
for understanding how to evaluate statistical defaults vis a vis probabilis-
tic approaches to statistical argumentation and, it is suggested, useful for
evaluating non-standard logics.

Keywords: Non-monotonic logic; statistical reasoning; resource-bounded
inference; paraconsistency; Dutch Book.

1 Implication and Reasoning

In this paper I discuss the relationship between paraconsistency and Statisti-
cal Default Logic, a formalism that captures key structural features of statisti-
cal inference and allows for the logical representation of statistical arguments
[Wheeler, forthcoming]. However, before turning to this discussion it is impor-
tant to clarify precisely what kind of problem Statistical Default Logic addresses.
I propose to do this by way of clarifying an ambiguity in the term ‘logic’, one
that has at once spurred the development of non-classical logics while frustrating
our attempts to evaluate their bounty.

The term ‘logic’ may be used to denote three distinct sorts of theories. In
its most widely accepted and contemporary sense, ‘logic’ refers to the theory of

*This research was supported in part by the Institute for Human and Machine Cognition,
Pensacola, and National Science Foundation grant SES 990-6128.



implication.! The theory of implication is a branch of mathematics that, like

other branches of mathematics, consists of examining sets on which relations and
functions have been defined and then determining what relations hold among
these structures. It is a descriptive theory.

Normative questions arise when we consider which class of structures is ap-
propriate for modeling some or other concrete problem. For the theory of im-
plication, the problem is found at the heart of mathematics itself: the relation
of logical consequence. The relation, ranging over propositions, holds in virture
of the logical form of propositions. The Bolzano-Tarski formulation of logical
consequence is the one most familiar to us whereby a proposition ¢ is a logical
consequence of a set of sentences I' if in any model in which every sentence in I'
is true is also a model in which ¢ is true. We should keep in mind that Tarski
proposed his formulation of logical consequence as a mathematical tool, one
whose purpose was to model our pre-theoretical notion of logical consequence
[Tarski 1930, p 414]. Unlike other branches of mathematics whose problems
often provide guidance in model selection in the form of physical constraints
or observational evidence, the question of which class of structures is appro-
priate for modeling logical consequence is a philosophical one whose range of
allowable answers is constrained most sharply by considerations from within the
foundations and practice of mathematics.

The theory of implication must be distinguished from a second sense of
‘logic’, one that refers to the theory of reasoning. The theory of reasoning, if
one were had in full, would be an applied mathematical discipline, one that stud-
ies a class of rational activities performed by humans. The theory of reasoning
is far less developed than the theory of implication in part because the theory
of reasoning depends upon rationality and rationality is not well understood
[Harmon 2002]. Nevertheless, fragments of a theory of reasoning are found in
the fields of (mathematical) psychology, economics, artificial intelligence, phi-
losophy and the cognitive sciences. Because reasoning is bound to the notion
of rationality, the theory of reasoning is, at least in part, normative. But being
a human activity the theory of reasoning is, at least in part, descriptive. Sort-
ing out precisely how each of these components constrains the other is another
fundamental problem facing a theory of reasoning.

But it should be noted that the theory of implication is a poor choice for
serving as either a descriptive or normative theory of reasoning. It fails as a
descriptive theory of reasoning on at least three fronts. First, the theory of
reasoning at best concerns operations performed on propositional attitudes, not
propositions. But how should we represent a particular agent’s belief states?
One proposal is to give a probabilistic interpretation of belief and treat an
agent’s change in belief in a proposition as following a set of axioms. I'll have
more to say about this proposal soon, but notice that as a descriptive theory it
is implausible: I for one have not the slightest idea how to identify the supposed
real number value of anything of mine that I would identify as a belief. Another

IThere are two senses of the term ‘implication’, one having to do with the relation between
antecedent and consequent in a true conditional, the other sense having to do with a relation
between a set of propositions and a single proposition. The concern here is this latter sense.



proposal is to represent the propositional attitudes of belief and knowledge as
operators on propositions. But it isn’t clear what properties are sufficient for
belief and knowledge, and the minimal set of conditions that philosophers have
considered necessary for knowledge court paradox [of knowledge: Montague
1970; Cross 2000; Uzquiano, forthcoming; of knowability: Fitch 1963; Edgington
1985; Williamson 2000; Wansing, this volume.].

The second reason to doubt that the theory of implication describes human
reasoning is that empirical evidence suggests that people generally aren’t that
good at deduction, which may explain why it is considered a skill. If a theory
of implication were a good candidate for a theory of reasoning we should ex-
pect deductive derivations to be among the easiest tasks for us to perform. But
we often do not see the logical consequences of a set of propositions; indeed,
this situation describes the state of significant and open problems in mathe-
matics. Furthermore, test subjects repeatably perform poorly, even if better
than chance, when they are called upon to correctly classify simple candidate
deductive derivations as valid or invalid [Evans, Newstead, and Byrne 1993].

The third reason against proposing the theory of implication as the descrip-
tive theory of reasoning is the resource constraints each, the subject and the
logic, make on the other. First, human beings have neither an infinite memory
nor the luxury of eternity to work out all logical consequences of their beliefs.
That we run out of cognitive capabilities long before applicable rules is also a
problem for a normative theory of reasoning, a point we will return to shortly.
For now it is important to notice that human reasoning imposes its own set of
awkward constraints on the theory of implication, for reasoning occurs within
time and a situation, very often involving less than certainly known but ra-
tionally accepted premises and often proceeding in a non-monotonic fashion.
But rational acceptance doesn’t behave like truth in a model, logically derived
consequences are anything but defeasible, and situations and time are neither
among the basic elements of a theory of implication nor are they features easily
added without weakening the theory itself.? Finally, without a consistent set
of propositions or marginal probability assignments the theory of implication
and its probabilistic cousin trivialize. But people don’t necessarily stop reason-
ing well when their beliefs are inconsistent. For one thing, they may not be
aware that their beliefs are inconsistent. For another, casual observation notes
that people typically don’t suffer fits of gullibility when they are made aware of
having inconsistent beliefs.

The failure of the theory of implication to serve as a remotely plausible
candidate for a descriptive theory of reasoning suggests that people have in mind
proposing the theory of implication as a normative theory of reasoning, perhaps
as a description of an ideally rational agent. For example, Bayesianism offers in
one package the normative notion of Bayesian rationality along with a method
for changing degrees of belief for an ideal Bayesian agent. Likewise, symbolic

2 Artificial Intelligence theorists are well aware of the tension between a formal language
expressive enough to suitably model the logical form of natural language expressions yet
powerful enough to support inference. For discussion and an example of how to juggle this
tension, see [Schubert and Hwang 2000].



approaches offer prescriptive advice for how certain propositional attitudes, such
as belief and knowledge, behave when we accept certain constraints on those
concepts, delivering to us a guide to what an ideal agent would conclude given
those constraints.

While the study of ideal reasoning is fruitful for as far as it goes, it is not
clear precisely what prescriptive advice we should take away for the theory of hu-
man reasoning. Fitch’s paradox remains for modal approaches, and formulating
a plausible, paradox-free epistemic closure principle remains an open problem
for a language with a knowledge predicate.?> On the other hand, proponents of
Bayesian rationality argue that our degrees of belief (!) should be isomorphic
to the probability measure since otherwise we may with certainty lose money
if presented with a ‘Dutch Book’, which is a set of bets offered that returns a
certain loss no matter the outcome. But it is fair to ask how well this model
accords to the range of things we are able to do: Are we psychologically able to
approximate the conditions that bound ideal agents? To answer this question,
we must address whether one is able to assign a real-numbered value to a be-
lief he may have, whether he may compare all of his beliefs and, furthermore,
whether he may do so consistently in order to thwart clever bookies. The reason
that it is important to consider the sense in which these operations are possible
is that this model of ideal reasoning is unforgiving to those of us who fall short.
If we are prevented from meeting these conditions by psychological necessity,
say, we may then ask what force the prescriptive advice from such a theory
holds for us.

The point I wish to stress is that the relationship between the reasoning we
perform in our heads and the algebras we study is not at all well understood.
This point brings us to consider the third sense of the term ‘logic’, the one
that figures in the remainder of this paper and is sometimes called the study
of entailment. For reasons to be considered next I call this sense of ‘logic’ the
theory of inference.

2 Entailment and The Theory of Inference

The term ‘entailment’ is commonly understood to refer to a relation that some-
times holds between the premises and conclusion of an argument. Traditionally,
the term is used as another name for the sense of implication we have been
working with here, the relation designed to model logical consequence. This
convention of treating ‘implication’ and ‘entailment’ as working synonyms suits

3Note on epistemic closure: Setting aside the paradoxes for the moment, notice that simply
closing knowledge (of some agent S) under implication is not a suitable principle. The principle
‘If S knows p and p implies q, then S knows q’ fails to specify that S knows q by reason of
deriving it from p. Yet building this qualification into a suitable closure principle, as in ‘If S
knows p and S believes q on the basis of recognizing that p implies g, then S knows ¢’ forms
the basis of work on the problem of epistemic closure, a project that at once seeks to avoid
counter examples and specify precisely what it is for a person to recognize an implication of
what one knows. It should be noted that some [e.g., Dretske 1970 and Nozick 1981] have
rejected the claim that knowledge is closed under implication.



when we restrict ourselves to the study of logical consequence. But if we un-
derstand at least one sense of ‘logic’ to refer to the study of the structure of
arguments, then the notions of entailment and implication come apart.

It is here that we must be careful. Framing logic as the study of entailment
is freighted with a controversial history, for the claim that logic is the study
of entailment has served those who would have classical logic replaced by some
markedly different system [e.g., Anderson, et. al. 1975, 1992; Routley et. al.,
1982; Priest 1998]. We’ve already suggested that figuring out which class of
structures is the right one for the theory of implication is a philosophical mat-
ter of picking the appropriate class of structures to model the working notion
of logical consequence used within mathematics itself.* It is my view that the
development of the theory of implication should not to be guided by events in
physics, nor from observing how we reason out fictional plots involving impossi-
ble objects and certainly not from our apparent day-to-day ability to reason with
inconsistent beliefs. The issues these problems raise are problems of applying a
logic to matters entirely distinct from understanding logical consequence.

Furthermore, we should be careful to distinguish between the psychological
act of drawing a conclusion from an argument we’re considering and the abstract
thing that is an argument, the latter being constructed from sentences and
having relations that all parties involved may describe as holding (or not) among
some sentences under consideration. The latter is a thing liable to modeling by
defining relations and functions on sets of propositions in ways familiar to us
while the former, as we’ve seen, is not transparently so.

With these distinctions in mind, it can be seen that there is room for more
than one entailment relation to tie a conclusion to its premises. The distinction
between deductive and inductive inference suggests itself here. But whereas the
theory of implication has served as a good template for understanding a certain
class of deductive arguments, perhaps all of them, our failure to understand the
structure of inductive arguments has been widely noted and, in some quarters
at least, definitive. But the task of developing an inductive logic has suffered
both from a poorly organized catalog of good inductive argument patterns and
a popular zeal for a particular monotonic tool: probability theory.

What the study of induction calls for is a reasonably constrained class of
arguments with which to work; only then may we have a better idea of what
parameters to fix in order to evaluate proposals. Classical statistical inference of-
fers a good class of candidates to the inductive logician in large measure because
the structure of both statistical method and theory lends itself to abstraction.
If classical statistical inference indeed provides a suitably constrained class of
argument patterns, then we may consider precisely what kind of mathematical
tool is best suited to modeling them.

4The view that the aim of logic is to find the right class of structures is to be contrasted
with pluralism, the view that there isn’t a single correct notion of logical consequent but many
[Restall and Beall 2000], and the view that there isn’t a fixed answer to the question of which
notion of logical consequence is the correct one because the logical vocabulary of a language
is only fixed by convention [Varzi 1999].



3 Statistical Inference and Statistical Defaults

The entailment relation that figures in classical statistical inferences is most cer-
tainly not logical consequence. One property that distinguishes this entailment
relation from logical consequence is monotonicity: classical statistical inference
is non-monotonic, for reasons we will soon consider, while logical consequence is
monotonic. Another property that distinguishes statistical inference from log-
ical consequence is paraconsistency: a set of accepted statistical premises are
defeasible, rather than true, and so may be inconsistent. Statistical consequence
should not trivialize under these conditions. That classical statistical inference
is in some sense tolerant of inconsistency sets statistical inference apart from
probabilistic approaches to modeling uncertain reasoning. We will return to this
point as well. But let us now consider what marks an inference as a classical
statistical inference.

An important feature of classical statistical inference is its emphasis on the
control of error. In making statistical inferences—a term intended to include
hypothesis testing and estimating basic parameters of populations, such as their
means, proportions and variances—one accepts a conclusion along with a warn-
ing that there is a small, preassigned chance that the conclusion is false. A
statistical inference controls error to the extent that its advertised frequency of
error corresponds in fact to the chance one faces in making that inference and
its conclusion being false.

One type of classical statistical inference is significance testing. Significance
tests are designed to yield a false rejection of the null hypothesis H, no more
than a fraction & of the time. A significance test is a good one if the test
succeeds in controlling error—that is, if the frequency of error is in fact &—and
the frequency of error is relatively small, usually less than 0.05.

Ronald Fisher’s [Fisher 1956] canonical example suits our purpose here.
Fisher imagines a lady who claims to distinguish by taste the order of ingredi-
ents, milk first or tea, added to her cup. Question: How do we test whether she
can do it? The short answer is to see if she performs better than chance. Per-
forming no better than chance, Fisher reasoned, would amount to correct calls
of heads on a sequence of fair coin tosses. If the null claim H, is true then we
would expect that the probability of correctly identifying the ingredient-order
of, say, a 5 cup series of milk-tea mixtures to be 1 out of 32, or 0.031. If we
accept these odds as long enough, then we have the rudimentary conditions for
rejecting the null and inferring that she has the ability: see if she can correctly
classify a series of 5 prepared cups of tea.

But there is a catch. Five correct guesses is significant only if the sequence
of her correct guesses is not had by means other than her sense of taste. If
the milk-first samples differed in color from tea-first samples, for instance, her
scoring 5 out of 5 wouldn’t tell us much about the veracity of her claim. This
significance test is bounded in error by & = 0.031 when in fact the chance we face
of rejecting the null and yet her not having the ability to discriminate milk-first
from milk-last cups of tea-milk mixtures is just 1 in 32 [Wheeler, 2000].

Ideally, we want the sample—her sips and classification of the five cups



of tea—to be representative of the target population, that is the entire class
of her sips and classification of cups of tea and milk. Textbooks tell us that
to achieve representative samples we need to ensure that the sample is drawn
at random [Cramér, 1951; Moore, 1979; Baird, 1992]. But demanding that
a selected sample be selected by a method that yields each possible sample
with equal long-run frequency is difficult if not impossible to meet. In practice,
the grounds for accepting that a sample is representative rests on failing to
detect that it is biased. That is, given a sample and the absence of specific
information that would indicate that the sample is biased, we infer that the
sample is representative of the parameter(s) of interest in the target population.
So given that a lady correctly identifies 5 of 5 samples and it isn’t the case that
we know of conditions that would suggest a bias (e.g., it isn’t the case that we
know that the cups weren’t stirred, nor is it known that the experiment wasn’t
performed double blind, nor known that the cups weren’t standardized in size
and weight) we reject the null and infer that her claim is true: she can do it.

It turns out that the structure of this inference pattern is standard across
a significant class of techniques common in classical inferential statistics. We
draw a sample, test for bias, then conclude (by default) that the statistical
model ‘fits’ and thereby the values observed or measured in the sample hold in
the population within the bound of error prescribed by the statistical model.
The conclusion is made by default since new information may come to light
and incorporated into the theory that signals that the sample may be biased
and so the inference should be withdrawn. It is important to lay stress on the
kind of evidence that triggers a withdrawal of a statistical conclusions. It is
often the case that we don’t have outright evidence of a sample being biased.
Rather, we learn of conditions that undermine our confidence that the sample is
representative: recording 5 of 5 correct guesses of unstirred cups of tea doesn’t
entail that the lady’s record of correct guesses isn’t due to her ability. The
conclusion to draw is that the test is not a good one and so no conclusion about
the lady’s ability should be based on this inference.

The non-monotonic behavior suggested by this description is common in
statistical reasoning. What is interesting is that the logical structure of this
inference pattern is very similar to default rules found in default logic. Although
a connection between statistical inference and default logic has been suggested
in the work of [Tan 1997], the first proposal to represent classical statistical
inference in terms of defaults is [Kyburg and Teng, 1999]. A default is an
inference rule of the form

@B P
)

5 (1)

interpreted roughly to mean that given a and the absence of any negated f;’s,
conclude ~ by default [Reiter, 1980]. Kyburg and Teng observe that default rule
justifications—the formulae denoted by the 3;’s in the default inference form—
represent the role randomization is thought to play as a sufficient condition for
a sample being representative.

We've already observed that randomization isn’t a necessary condition for
drawing a representative sample: it is often impractical or impossible to draw



a random sample. A more important consideration, however, is Kyburg and
Teng’s claim that randomization is not a sufficient condition, either. It is not
sufficient since a randomly selected sample may produce a sample that we know,
given our background knowledge, is not representative. For example, a random
sample of shelled walnuts from a barrel may draw only members from the bottom
of the barrel. But if our interest is to determine the proportion of broken to
whole walnuts, we know that this sample is not representative even if drawn at
random: knowing that broken bits settle to the bottom of the barrel trumps
knowing that the sample is a random one.

We began the discussion of statistical inference by citing the importance
of controlling error. But notice that standard defaults do not accommodate
this property, for there is no constraint in the logic to distinguish between
the case when a battery of tests (default justifications) are suitable for the
statistical model holding and the case when no tests for bias are even included
at all [Wheeler, forthcoming]. Hence, standard defaults only provide half of
the structure of statistical inference. A remedy is proposed in the notion of a
statistical default. S-defaults differ from defaults by explicitly acknowledging
the upper limit of the s-default’s frequency of error.® Call a default in the form

of
« /31,...,/%
— €, 2
~ ( )

an e-bounded statistical default and the upper limit on the frequency of error-
parameter € an e-bound for short, where M is a Reiter default and 0 <
€ < 1. The schema (2) is interpreted to say that provided a and no negated
Bi’s, 7 is false no more than e over the long-run application of that rule. (A
Reiter default is a special case of a statistical default, namely when € = 0). A
statistical default is sound just when the upper limit of the frequency of error is
in fact €. An s-default is a good inference rule if it is sound and e is relatively
small, typically less than 0.05.

The art of constructing a good statistical default, one whose advertised e-
bound is an acceptable level and in fact true, depends upon the background
knowledge necessary to form the set of s-default justifications that determine
the fit between a statistical model and its successful application. Disagreement
about the soundness of a statistical default is then similar to disagreement
about the soundness of a deductive inference in the sense that a distinction
is made between the form of the inference and whether the constituents of the
inference are (or not known to be) satisfied. Treating € as an explicit parameter
in statistical default forms allows there to be an explicit constituent in the
argument form that, much like a premise in a deductive argument, may be true
or false.

To illustrate, return to Fisher’s test of the tea-taster’s claim. Significance
tests represented within a statistical default framework are inference rules de-

5A trivial corollary of the frequency of error & for a statistical inference is the upper limit
of the frequency of error, denoted by e. So, if & = 0.03 is understood to mean that the
probability of committing a Type I error is 0.03, then ¢ = 0.03 is understood to mean that
the probability of committing a Type I error is no more than 0.03.



signed to yield the conclusion v when + is false no more than € over the long run
application of that rule. The frequency of error of a five-trial binomial-chance
model is 1/32, which is a mathematical truth. Whether the frequency of error
associated with this statistical model represents the risk of error we in fact face
in rejecting H, after seeing 5 correct guesses, however, is an empirical matter:
it depends on how thorough a job we do in checking for bias, which is the sub-
stance of the statistical default justifications. Consider these substitutions for
schema (2):

« : A sample of 5 milk-tea mixtures were prepared and the lady
correctly identified the mixture order in all 5.

v : —H, : the lady does have the ability to discriminate order by
taste.

B1 : The sample on which this inference is based is unbiased.®

B2 : The sample of 5 is the largest appropriate sample we have.

B3 : There is no known set of prior distributions such that con-
ditioning on them with the data obtained leads to a probability
interval conflicting with e.”

e = 0.03125

We accept that the subject has the ability to discriminate by taste (reject
the null claim that she doesn’t) only if no s-default justifications are violated.

For instance, violating justification #; amounts to knowing two things. First,
we know that the sample comes from an unusual class of samples and, second,
that the proportion of samples that lead to the false rejection of H, in this class
in fact leads to falsely rejecting H, more often than 3% of the time.

The second justification demands that we not know that there is no larger
sample. It is possible that there is data that we are unaware of: 2 doesn’t
demand that n is the largest sample we have, but that we don’t know that it
isn’t.

Finally, the third justification pertains to prior knowledge. If we knew that
the relative frequency of error for H, was 0.25, as opposed to the a value of 0.03,
that would surely have a bearing on our significance test inference. If we have
prior knowledge of distribution for a parameter we should use that knowledge.®

6 Although we cannot demand lack of bias as a prerequisite, we could demand such pre-
requisites as “good sampling technique.” Nevertheless, since we cannot calculate the added
frequency of correct conclusions due to good technique, this seems a questionable prerequisite.

"What “conflict” comes to is an interval that overlaps with, but does not include and is
not included in, [1 — ¢, 1].

8See [Kyburg and Teng, 1999] for examples of statistical estimations represented as default
inferences, and [Wheeler, 2002] for s-default corollaries and, in addition, an s-default example
representing conditionalizing with objective probabilities.



4 Inconsistent Exenstions and Dutch Books

A statistical default theory is analogous to a default theory® in that statis-
tical defaults appear in the object language and an s-default theory induces
non-monotonic consequences via a fix-point construction. A non-monotonic
consequence relation is then defined by identifying the conclusion set with the
intersection of all candidate extensions.

Given the parameter e, however, a complication arises in building suitable
extensions. The problem centers on the need to restrict membership of any
conclusion set to just those formulae appearing in an extension that may be
reached by a sequence of inference steps that remains under a specified error
bound. But bounds for frequency of error for particular statistical inferences do
not necessarily carry over unchanged when chained together to form a statistical
argument. Accepting a hypothesis H; with a confidence 0.95 and accepting
another hypothesis Hs independently with a confidence 0.95 doesn’t entail the
acceptance of Hy and Hs at 0.95. The upshot of this observation is that closure
conditions within a statistical default theory must be relativized to a given
error bound. Since the point of an e-bound is to provide a firm upper-bound on
frequency of error, an error bound for a sequence of inference steps is calculated
by summing the error bound parameters of all constituent inference steps.'°

It should be noted that summing error bounds is an imprecise measure: it
assumes the worst case, that the frequency of error for statistical inference is in-
dependent. However, this result accords to practice: reduction of false positives,
or Type II errors, depends on background knowledge in a manner that Type I
errors do not. If ¢ appears in all extensions yet cannot be reached within the
designated error bound, then there is an incentive to refine the statistical infer-
ences within the theory in an attempt to accommodate ¢. One way to do that
is to look for dependency relations between statements that would allow their
conjunction to have an error bound less than the sum of the conjuncts; another
would be to revise the statistical tests applied in a sequence of reasoning by
lowering their error bounds. Regardless, a feature of SDL is that by having the
error-bound parameter function independently of the mechanism for inducing
consequences, one may isolate formulae that are non-monotonic consequences
of a theory but not within current bounds. This feature allows one ot focus on
what part of the theory to first consider revising.

A candidate statistical default extension is constructed much like a candidate
default extension. Recall that a default extension on a default theory (W, D) is
built sequentially by first closing the set of sentences, W, under logical conse-
quence, applying all applicable defaults in D to the set of consequences of W,
closing that set (extension) under consequence, and so on. While a standard
default extension is built sequentially by alternatingly closing an extension un-
der consequence and applying defaults until no more defaults can be applied,
statistical defaults are built in the same manner but only with those sentences

9A default theory is a pair (D, W) where D is a (countable) set of defaults and W is a set
of closed formulae.
10For details, see [Wheeler, forthcoming].
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that are below the bound set by e.
To illustrate how a statistical default extension is constructed, consider the
following example.

Example 4.1. Let Al = (W, S) be a statistical default theory,
where W = and S contains four s-defaults:

cA : B A:B,C AANB:-C
D, = {70.017 §0.01, c 0.01, = 0.01}
For an error-bound parameter e¢; = 0.02, there is one statistical

default extension IT! containing
A, B,ANB,C.

The bounded sentence A at €4 is included in extension II' by ap-
plying the default % and bounded sentence B at eg is included by
applying the default %, where each inference has an error bound of
0.01, so (A)g.01 and (B)o.o1- (AAB)e, 5 is included in the extension,
since the sum of the error bounds of conjoining A and B is 0.02, that
is (A A B)g.o2. The bounded sentence C' at e is included by using
A, whose error bound is 0.01, to apply the default A:g’c, whose
error bound is also 0.01. Hence (C)g.g2. The default % cannot
be applied because the resulting conclusion ~C' would have an er-
ror bound of 0.03, (—C')¢.03 which is above the designated threshold
e; = 0.02.

For an error parameter e = 0.03, there are two statistical default
extensions IT' | which is the same as described above, and IT?, where
II? contains

A, B,ANB,~C.

The default rule that could not be applied before is now applicable
with respect to e, giving rise to the second extension I12.'!

Like their default logic counterparts, it is not uncommon for statistical
default theories to have multiple extensions. We see in Example 4.1 that
Al = (W, S) when e = 0.03 is inconsistent with respect to the pair of applicable
s-defaults concerning C'.

However, we've yet to define a consequence relation. A common way of
defining a non-monotonic consequence relation for a default theories is to in-
clude only those sentences in the conclusion set that appear in every extension.

1 The complete extensions IT', when € = 0.02, II' and II12, when ¢ = 0.03, are as follows:
ggz%o}z ={A,B,AANB,C}; Il o5 ={A,B,ANB,C,ANC,BAC}; TI2_ 1o = {A, B, AN
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An analogous consequence relation for statistical default theories is defined as
follows:

Definition 1. Skeptical Statistical Consequence: Let Ay = (W, S) be a statis-
tical default theory at €, A a sentence and II an extension on A bounded by e.
Then A is a skeptical consequence of Ay at e—written, A |~ A—just in case
A € II for each extension IT on A, at e.

The consequence relation p~. is nonmonotonic. Notice that by either aug-
menting the set of (bounded) sentences in the W-component of a statistical
default theory or adding new default rules to the S-component a previously
induced statistical consequence (at a particular error-bound) may then fail to
remain supported by the statistical default theory (at that particular error-
bound). Citing results from [Wheeler, forthcoming], we remark also that s-
default logic is supra classical (i.e., when the set of s-defaults is empty, the
consequence relation is logical consequence) and that Reiter default logic is a
limitting case of S-default logic, namely when every s-default in an s-default
theory has an error-bound of 0).

Finally, notice that statistical default consequence is paraconsistent. The
S-component of a statistical default theory may contain s-defaults that induce
consequents that are mutually inconsistent. But, since statistical consequence
is a skeptical inference operation, only those formulae that appear in every e-
bounded extension will be e-bounded consequences of the theory. It is important
to stress that this paraconsistent behavior is common to default logic. The
novelty lies in how we may think about building a statistical theory. While it
is of course preferable to avoid introducing an inconsistency into a statistical
theory, it is not catestrophic to do so—when in the form of adding s-default
rules that induce an inconsistent set of consequents, that is. We may have good
grounds for including each s-default a set that is nevertheless inconsistent; our
working view of a theory is rarely from a bird’s eye. Furthermore, a logic that
works in this circumstance provides the rudiments for tools for isolating the
portion of the theory to revise. This result is in sharp contrast to probabilistic
approaches.

The point to draw from the contrast is this: We shouldn’t be cowed by
Dutch Book arguments made to the effect that the machinery of s-default logic
is, in so far as it allows us to encode a statistical theory that is not stand
one-to-one with the probability measure, irrational. It bears repeating that
s-default logic is designed for sentences that a community is in a position to
accept and not a tool for representing beliefs in an imaginary agent’s head.
Furthermore, accepting a framework that accommodates an inconsistent theory
is not to endorse having an inconsistent theory: on the contrary, it gives us
some resources for making a revision. We remarked in sections 1 and 2 that
Bayesianism doesn’t offer a prima facie attractive framework because of the
implausible assumptions it demands. Nevertheless, one may be persuaded by
claims that Bayesian approaches represent ‘the only game in town.” But now
that we’ve been introduced to SDL, we may see that the argument to the effect
that rationality (inference) is lost when an accepted theory is not isomorphic
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with the probability measure is unsound.

5 Conclusion

In this paper I've argued that we must distinguish between at least three senses
of ‘logic’ and that of those three the most fruitful one to keep in mind when
evaluating a new logic is the study of entailment relations appearing in argu-
ments. An informal introduction to statistical default logic was provided. This
is a non-monotonic framework for representing arguments composed, at least in
part, of classical statistical inferences. A non-monotonic consequence relation
for statistical default logic was defined in the familiar skeptical fashion. This
consequence relation allows for a mild form of paraconsistency, namely when
the set of s-defaults induces a set of consequents that is inconsistent. Skeptical
statistical default consequence does not necessarily trivialize for precisely the
same reasons skeptical default consequence doesn’t: there may be consequents
that appear in all extensions, which represents the non-monotonic consequence
set of the consistent fragment of the statistical default theory (at a particular er-
ror bound). While this is a common feature to skeptical consequence relations
in general, the novelty rests in application: Statistical Default Logic offers a
genuinely non-monotonic and mildly paraconsistent alternative to probabilistic
accounts of classical statistical inference.
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