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Abstract. A bounded formula is a pair consisting of a propositional formula φ
in the first coordinate and a real number within the unit interval in the second
coordinate, interpreted to express the lower-bound probability of φ. Converting con-
junctive/disjunctive combinations of bounded formulas to a single bounded formula
consisting of the conjunction/disjunction of the propositions occurring in the collec-
tion along with a newly calculated lower probability is called absorption. This paper
introduces two inference rules for effecting conjunctive and disjunctive absorption
and compares the resulting logical system, called System Y, to axiom System P.
Finally, we demonstrate how absorption resolves the lottery paradox and the paradox
of the preference.
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1. Introduction

The lottery paradox (Kyburg 1961) arises from considering a fair 1000
ticket lottery that has exactly one winning ticket. If this much is known
about the execution of the lottery it is therefore rational to accept that
one ticket will win. Suppose that an event is very likely if the probability
of its occurring is greater than 0.99. On these grounds it is rational to
accept the proposition that ticket 1 of the lottery will not win. Since the
lottery is fair, it is rational to accept that ticket 2 won’t win either—
indeed, it is rational to accept for any individual ticket i of the lottery
that ticket i will not win. However, accepting that ticket 1 won’t win,
accepting that ticket 2 won’t win, . . . , and accepting that ticket 1000
won’t win seems to entail that it is rational to accept that no ticket
will win, which entails that it is rational to accept the contradictory
proposition that one ticket will win and no ticket will win.

The paradox of the preface (Makinson 1965) arises from considering
an earnest and careful author who writes a preface for a book he has
just completed. For each page of the book, the author believes that it
is without error. Yet in writing the preface the author believes that
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2 Gregory Wheeler

there is surely a mistake in the book, somewhere, so offers an apology
to his readers. Hence, if the author conjoins his individual beliefs, he
appears to be committed to both the claim that every page of his book
is without error and the claim that at least one page contains an error.

Abstracted from their particulars, the lottery paradox and the para-
dox of the preface are each designed to demonstrate that three attrac-
tive principles for governing rational acceptance lead to contradiction,
namely that

1. It is rational to accept a proposition that is very likely true,

2. It is not rational to accept a proposition that you are aware is
inconsistent, and

3. If it is rational to accept a proposition A and it is rational to accept
another proposition A′, then it is rational to accept A ∧A′

are jointly inconsistent. For this reason, these two paradoxes are some-
times referred to as the paradoxes of rational acceptance.

In (Wheeler 2005) I advocated that we adopt the structural view of
rational acceptance to resolve these two paradoxes. The structural view
is motivated by observing that the problem raised by the paradoxes
of rational acceptance is a general one of how to reconcile the first
and third legislative principles. But to study the general relationship
between rational acceptance and logical consequence, we need to under-
stand valid forms of arguments whose premises are rationally accepted
propositions. This point suggests three conditions for us to observe.
First, it is important to define the notion of rational acceptance inde-
pendently of any particular language, since this notion is serving as a
semantic property that is thought to be preserved (in a restricted sense)
under entailment. Second, to formally represent an argument composed
of rationally accepted propositions we must have facilities for formally
representing their combination within an object language. Finally, of
formal languages that satisfy the first two properties, preference should
be given to those within systems that make the relationship between
rational acceptance and logical consequence transparent.

So what kind of proposal counts as a structured proposal? The
short answer is that the structural constraints are intended to nar-
row our consideration to just those proposals that feature a genuine
probabilistic logic. In this essay I present an outline of a candidate
solution to the paradoxes of rational acceptance that I favor. This
proposal is constructed around two rules called conjunctive absorption
(CA) and disjunctive absorption (DA) that are used to convert con-
junctions/disjunctions of rationally accepted propositions to rationally
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accepted conjunctions/disjunctions. The paper first introduces these
two rules and then discusses some properties that they enjoy. Finally,
I discuss how to apply absorption to resolve the lottery and preface
paradoxes.

The key to progress on either of these two paradoxes is to understand
the behavior of operators roughly similar to Boolean disjunction and
conjunction but that include a provision for the possible depletion
of probability mass when probabilistic events are combined. Just as
propositional calculi may be viewed as studies of some class or other of
propositional connectives, a calculus for rationally accepted sentences
may be viewed as the study of connectives for rationally accepted sen-
tences. The structural view of the paradoxes of rational acceptance
simply holds that this is the right project to undertake if one’s aim is
to resolve these paradoxes.

2. Combined Events and their Measure

In this section we define a language of bounded formulas that expresses
basic propositions and their associated levels of confidence. This paper
studies the interpretation of a bounded formula 〈φ, e〉 as the inner-
measure (Halmos 1950) e induced by a classical probability measure
µ of the propositional formula φ. The next two subsections define this
notion.

2.1. Syntax and Semantics

Let Φ = {p, q, p1, p2, . . .} be an infinite set of primitive propositions, and
¬ and ∨ be the primitive Boolean connectives. The logical connectives
∧,→, and ↔ are the derived connectives, hence → is the material
conditional. Let > stand for p ∨ ¬p, and ⊥ stand for ¬>. The set of
propositional formulas is the set Φ closed under the primitive Boolean
connectives ¬ and ∨. Whereas p and q stand for primitive propositions,
φ and ψ stand for propositional formulas.

Let Υ be an infinite set of expression of the form 〈φ, e〉, called basic
bounded formulas, where φ is a propositional formula and 0 ≤ e ≤ 1.
The basic bounded formula 〈p, e〉 expresses that “the probability that
p is no less than e”. Complex bounded formulas are the set Υ closed
under {∨,∧}. There are no negated nor conditional bounded formulas:
that is, neither ¬〈φ, e〉 nor 〈φ, e〉 → 〈φ′, e′〉 appear in the language. We
denote the set of basic and complex bounded formulas by Υ+.

Semantics for basic bounded formulas are provided in terms of a
probability space (W,F , µ), where F is a σ-algebra over a set W and
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µ : F −→ [0, 1] is a probability measure defined on the space (W,F , µ)
satisfying

P1. µ(W ) = 1

P2. µ(
⋃∞

i=1Ai) =
∑∞

i=i(Ai), when Ai are countable, pairwise disjoint
elements of F .

When A and B are disjoint members of F and W is finite, a special
case of P2 is

P2∗ µ(A ∪B) = µ(A) + µ(B),

from which, along with P1, a useful general additivity property may be
derived, namely

P2′ µ(A∪B) = µ(A) + µ(B)− µ(A∩B), when A and B are elements
of F .

A probability structure is a tuple M = (W,F , µ, π), where (W,F , µ)
is a probability space and π is an interpretation function associating
each element (world) w ∈W with a truth assignment on the primitive
propositions in Φ such that π(w)(p) ∈ {true, false} for each w ∈ W
and for every p ∈ Φ.

Assume now that F is a subalgebra of an algebra F ′, F ⊆ F ′.
Observe that if µ is a probability measure on F and A ∈ F ′ −F , then
µ(A) is not defined since A is not in the domain of µ. However, we
may extend the measure µ to the set A by defining inner and outer
measures (Halmos 1950) to represent our uncertainty with respect to
the precise measure of A, an approach developed in (Fagin, et. al. 1990)
and studied by (Walley 1991) and (Halpern 2003).

First, define an extension of a probability space as follows.

DEFINITION 1. A probability space (W,F ′, µ′) is an extension of
(W,F , µ) if F ′ ⊇ F and µ′(A) = µ(A) for all A ∈ F . If (W,F ′, µ′)
is an extension of (W,F , µ), then µ′ is said to extend µ.

We may then define inner and outer measures.

DEFINITION 2. Let F be a subalgebra of an algebra F ′, µ : F −→
[0, 1] a probability measure defined on the space (W,F , µ), and A an
arbitrary set in F ′ −F . Then define the inner measure µ∗ induced by
µ and the outer measure µ∗ induced by µ as:

µ∗(A) = sup{µ(B) : B ⊆ A,B ∈ F} (inner measure of A);
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µ∗(A) = inf{µ(B) : B ⊇ A,B ∈ F} (outer measure of A).

We now observe some properties of inner and outer measures:

P3. µ∗(A ∪B) ≥ µ∗(A) + µ∗(B), when A and B are disjoint
(superadditivity);

P4. µ∗(A ∪B) ≤ µ∗(A) + µ∗(B) , when A and B are disjoint
(subadditivity);

P5. µ∗(A) = 1− µ∗(A);

P6. µ∗(A) = µ∗(A) = µ(A), if A ∈ F .

Properties P3 and P4 follow from P1 and P2. Note that when W
is finite, P3 and P4 follow from P1 and P2∗. P5 makes explicit the
relationship between inner and outer measures. By P2, for each set
A, there are measurable sets B,C ∈ F such that B ⊆ A ⊆ C and
µ∗(A) = µ(B) and µ∗(A) = µ(C). Note then the limit cases: if there
are no measurable sets containing A other than the entire space W ,
then µ∗ = 1; if there are no nonempty measurable sets contained in
A, then µ∗(A) = 0. P6 makes explicit that inner and outer measures
strictly extend µ: if an event A is measurable, then the inner (outer)
measure of A is µ(A).

Also by P2 and P1, we may generalize P3 to

P3′. µ∗(A ∪B) ≥ µ∗(A) + µ∗(B)− µ∗(A ∩B)
(generalized superadditivity).

In short, inner and outer measures may be viewed as a method to
offer the best estimate for a set A based upon known measures of sets
containing or contained by A. A result, proved in (Ruspini 1987), makes
this notion precise.

THEOREM 1. (i) If (W,F ′, µ′) is an extension of (W,F , µ) and A ∈
F ′, then µ∗(A) ≤ µ′(A) ≤ µ∗(A). (ii) There are extensions (W,F ′, µ′)
and (W,F ′′, µ′′) of (W,F , µ) such that A ∈ F ′, A ∈ F ′′, µ′(A) = µ∗(A)
and µ′′(A) = µ∗(A).

Suppose that M = (W,F , µ, π) is a probability structure and that
G, called a basis of M , is a set of non-empty, disjoint subsets of W
such that F consists precisely of all countable unions of members of G.
When F is finite, then there is a unique basis G consisting precisely of
the minimal elements of F (Fagin, et. al. 1990). Given the probability
of every set in the basis set G, the probability of every measurable set
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is calculated by P2. Furthermore, the inner and outer measures may
also be defined in terms of the basis G: the inner measure of event A is
the sum of the measures of the basis set elements that are subsets of
A, whereas the outer measure of event A is the sum of the measure of
the basis elements that intersect A (Fagin, et. al. 1990).

Define for primitive proposition p ∈ Φ, M,w |= p iff π(w)(p) = true.
Then proceed by induction on the structure of propositional formulas.

M |= φ ∧ φ′ iff M |= φ and M |= φ′;

M |= φ ∨ φ′ iff M |= φ or M |= φ′;

M |= ¬φ iff M 6|= φ;

In the next sections we discuss how to extend the definition for propo-
sitional formulas to bounded formulas.

2.2. Conjunction and disjunction for bounded formulas

Since µ is defined on events rather than propositions, let [[p]]M de-
note the set of worlds within W in M where p is true. The following
proposition makes explicit the relationship between propositions and
events.

PROPOSITION 1. For arbitrary propositional formulas φ and φ′,

i. [[φ ∧ φ′]]M = [[φ[]M ∩ [[φ′]]M ,

ii. [[φ ∨ φ′]]M = [[φ[]M ∪ [[φ′]]M ,

iii. [[¬φ]]M = [[φ[]M .

The bounded formula 〈φ, e〉 is interpreted as the inner measure of the
set [[φ]]M . We may extend the definition for propositional formulas to
include Boolean conjunction and disjunction of bounded formulas in
the following manner:

M |= 〈φ1, e1〉∨. . .∨〈φn, en〉 iff µ∗([[φ1]]M ) = e1 or . . . or µ∗([[φn]]M ) =
en;

M |= 〈φ1, e1〉∧. . .∧〈φn, en〉 iff µ∗([[φ1]]M ) = e1 and . . . and µ∗([[φn]]M ) =
en.

However, Boolean combinations of bounded formulas are not very
informative: each bounded formula is treated as a proposition that
expresses its own lower-bound probability. The probability that p is at
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least .999 and the probability that p′ is at least .999 is satisfied by M
just in case the inner measure of p is .999 and the inner measure of p′ is
.999, which does not entail that the probability of the conjunction p∧p′
is at least .999. There is an important difference between the probability
of a conjunctive (disjunctive) event and the conjunction (disjunction) of
probabilistic events that prohibits distributing Boolean ∧ and ∨ freely
over bounded formulas.

Nevertheless, if individual probabilistic events have a lower-bound
probability then one may determine a lower bound on conjunctive and
also disjunctive combinations of those events based upon the properties
of inner measures. We do this by first considering bounds generated by
the properties of the classical probability measure µ.

LEMMA 1. For arbitrary propositions p and q and a probability struc-
ture M , if µ([[p]]M ) and µ([[q]]M ) are defined, then

(i) µ([[p]]M ∩ [[q]]M ) lies within the interval
[max(0, µ([[p]]M ) + µ([[q]]M )− 1),min(µ([[p]]M ), µ([[q]]M )], and

(ii) µ([[p]]M ∪ [[q]]M ) lies within the interval
[max(µ([[p]]M ), µ([[q]]M )),min(µ([[p]]M ) + µ([[q]]M ), 1)].

Proof. (i). By P2′, µ([[p]]M ∩ [[q]]M ) = µ([[p]]M )+µ([[q]]M )−µ([[p]]M )∪
[[q]]M ) ≥ µ([[p]]M )+µ([[q]]M )−1. Hence, µ([[p]]M∩[[q]]M ) ≥ max(0, µ([[p]]M )+
µ([[q]]M )−1). Next, observe that µ([[p]]M ) = µ({[[p]]M ∩ [[q]]M}∪{[[p]]M ∩
[[q]]M}) and µ([[p]]M ) = µ([[p]]M ∩ [[q]]M ) + µ([[p]] ∩ [[q]]M ) ≥ µ([[p]]M ) ∩
[[q]]M ). Similarly for µ([[q]]M ). So µ([[p]]M∩[[q]]M ) ≤ min(µ([[p]]M ), µ([[q]]M )).

(ii) From the proof of (i), we have that µ([[p]]M ) ≥ µ([[p]]M ∩ [[q]]M )
and µ([[q]]M ) ≥ µ([[p]]M ∩ [[q]]M ). Then from P2′, µ([[p]]M ∪ [[q]]M ) =
µ([[p]]M ) + µ([[q]]M ) − µ([[p]]M ∩ [[q]]M ) ≥ µ([[p]]) and µ([[p]]M ∪ [[q]]M ) =
µ([[p]]M ) + µ([[q]]M ) − µ([[p]]M ∩ [[q]]M ) ≥ µ([[q]]). So, µ([[p]]M ∪ [[q]]M ) ≥
max(µ([[p]]M ), µ([[q]]M )). Finally, µ([[p]]M∪[[q]]M ) = µ([[p]]M )+µ([[q]]M )−
µ([[p]]M ) ∩ [[q]]M ) ≤ µ([[p]]M ) + µ([[q]]M ) and µ([[p]]M ∪ [[q]]M ) ≤ 1. So,
µ([[p]]M ∪ [[q]]M ) ≤ min(µ([[p]]M ) + µ([[q]]M ), 1).

Lemma 1(i) corresponds to the ignorance p-strategy discussed in
(Dekhryar and Subrahmanian 2000), where the probability of p ∧ q
is bounded below by µ([[p]]M ) + µ([[q]]M ) − 1 when this expression is
positive, 0 otherwise, and the probability of p∧ q is bounded above by
the lower of the two marginal probabilities, µ([[p]]M ) or µ([[q]]M ).

An important property of Lemma 1 is that the bounds are deter-
mined purely by the properties of the measure µ; there is no probabilis-
tic assumption made about the events [[p]]M and [[q]]M other than that
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each is measurable, i.e., that each set is in F . The point we wish to
stress is that there are no probabilistic assumptions made about how
one event is related to the other. Indeed, Lemma 1(i) defines the lub
and glb for µ([[p]]M ∩ [[q]]M ) when no assumption is made about the
relationship between [[p]]M and [[q]]M .

We now extend this result to inner measures.

THEOREM 2. For arbitrary propositions p and q and a probability
structure M , if µ∗[[p]]M and µ∗[[q]]M are defined, then

(i) µ∗([[p]]M ∩ [[q]]M ) lies within the interval
[max(0, µ∗([[p]]M ) + µ∗([[q]]M )− 1),min(µ∗([[p]]M ), µ∗([[q]]M )].

(ii.) µ∗([[p]]M ∪ [[q]]M ) lies within the interval
[max(µ∗([[p]]M ), µ∗([[q]]M )),min(µ∗([[p]]M ) + µ∗([[q]]M ), 1)].

Proof. Observe that the statement is equivalent to Lemma 1 by P6
when [[p]]M and [[q]]M are measurable, i.e. when [[p]]M and [[q]]M are in
F .

By P3′, µ∗([[p]]M∩[[q]]M ) ≥ µ∗([[p]]M )+µ∗([[q]]M )−µ∗([[p]]M )∪[[q]]M ) ≥
µ∗([[p]]M )+µ∗([[q]]M )−1. Hence, µ∗([[p]]M ∩ [[q]]M ) ≥ max(0, µ∗([[p]]M )+
µ∗([[q]]M )− 1).

From P3, µ∗([[p]]M ) = µ∗({[[p]]M∩[[q]]M}∪{[[p]]M∩[[q]]M}) ≥ µ∗([[p]]M∩
[[q]]M ) + µ∗([[p]] ∩ [[q]]M ]) ≥ µ∗([[p]]M ∩ [[q]]M ). Similarly for µ∗([[q]]M ).
Then from P3′, we get µ∗([[p]]M ∪ [[q]]M ) ≥ µ∗([[p]]M ) + µ∗([[q]]M ) −
µ∗([[p]]M∩[[q]]M ) ≥ µ∗([[p]]M ), and likewise µ∗([[p]]M∪[[q]]M ) ≥ µ∗([[q]]M ).
So µ∗([[p]]M ∪ [[q]]M ) ≥ max(µ∗([[p]]M ), µ∗([[q]]M )).

Theorem 2(i) says that given an inner measure for p (induced by µ
under M) and an inner measure for q, the inner measure for p ∧ q is
bounded from below by µ∗([[p]]M ) + µ∗([[q]]M )− 1 when this expression
is positive, 0 otherwise, and the inner measure of p∧q is bounded above
by the lower of the two marginal inner measures, µ∗([[p]]M ) or µ∗([[q]]M ).
Part (ii) says that given an inner measure for p and an inner measure
for q, both induced by µ under M , the inner measure for p∨q is bounded
from below by the larger of the two marginal inner measures, µ∗([[p]]M )
or µ∗([[q]]M ), and bounded from above by µ∗([[p]]M ) + µ∗([[q]]M ) when
this expression is less than 1, and bounded by 1 otherwise.

Viewed in terms of bounded formulas, Theorem 2 states that 〈p, e〉
and 〈q, e′〉 entail that 〈p∧ q,max(0, e+ e′− 1)〉 and that 〈p, e〉 or 〈q, e′〉
entail that 〈p ∨ q,max(e, e′)〉.

We may generalize this result as follows.
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THEOREM 3. For arbitrary bounded formulas 〈φ1, e1〉, . . . , 〈φ1, e1〉,

(i) if M |= 〈φ1, e1〉 ∧ . . . ∧ 〈φn, en〉 then
M |= 〈φ1 ∧ . . . ∧ φn,max(0, (

∑n
i=1 ei − (n− 1))〉;

(ii) if M |= 〈φ1, e1〉 ∨ . . . ∨ 〈φn, en〉 then
M |= 〈φ1 ∨ . . . ∨ φn,max(e1, . . . , en)〉.

Proof. The proof follows directly from the definition of bounded
formulas and Theorem 2.

Our principle interest is in preserving the glb of bounded formulas
closed under logical consequence. We remark then that Theorem(ii)
is perhaps a stronger result than one might otherwise expect. For in-
stance, it might be thought that the glb of µ([[p]]M ∪ [[q]]M ) should be
[min(µ([[p]]M ), µ([[q]]M )) on the grounds that assuming the max value
allows for the possibility to absorb a disjunction bounded by the max-
value e disjunct and also to accept the negation of that max-valued
disjunct, whereat one may derive, by disjunctive elimination, the re-
maining disjunct that is strictly less than e. However, this line of
reasoning is blocked when working with inner-measures. This may point
to a limitation in the application of inner-measures to model ratio-
nal acceptance and (uncertain) reasoning by cases. Compare (Kyburg,
Teng and Wheeler, forthcoming).

COROLLARY 1. For arbitrary bounded formulas 〈φ, e〉 and 〈ψ, e2〉,

(i) 〈φ, e1〉 |=M 〈ψ, e2〉 iff φ |=M ψ and e2 ≤ e1.

(ii) 〈φ, e1〉 ≡ 〈ψ2, e2〉 iff 〈φ, e1〉M =||=M 〈φ, e2〉 iff φ1 ≡ φ2 and
e1 = e2.

Proof. Note that the bound of any sub-formula of φ does not exceed
e1, by induction on the structure of φ. Observe then that (i) follows
from the 0-ary conjunction and 0-ary disjunction 〈φ1, e1〉 ∧ ∅ ≡ 〈φ1, e1〉
and 〈φ1, e1〉 ∨ ∅ ≡ 〈φ1, e1〉, respectively, since max(e1) = e1. Clause (ii)
then follows trivially from (i).

Next, we observe that conjunctions (disjunctions) of bounded formu-
las commute and associate, and that error-bounds are weakly, positively
monotone.

PROPOSITION 2. Define ◦ ∈ {∨,∧}. Then for arbitrary 〈φ1, e1〉 ◦
· · · ◦ 〈φn, en〉, let eA = max(e1, . . . , en) when ◦ = ∨, and let eA =
max(0,

∑n
i=1−(n−1)) when ◦ = ∧. Then the following properties hold:
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− if ((〈φ1, e1〉 ◦ 〈φ2, e2〉) ◦ 〈φ3, e3〉) |=M 〈φ1 ◦ φ2 ◦ φ3, eA〉
then (〈φ1, e1〉 ◦ (〈φ2, e2〉 ◦ 〈φ3, e3〉)) |=M 〈φ1 ◦φ2 ◦φ3, eA〉 (Associa-
tivity)

− If 〈φ1, e1〉 ◦ 〈φ2, e2〉 |=M 〈φ1 ◦ φ2, eA〉
then M |= 〈φ2, e2〉 ◦ 〈φ1, e1〉 |=M 〈φ1 ◦ φ2, eA〉 (Commutativity)

− if M |= 〈φ1, e1〉 ◦ 〈φ2, e2〉 |=M 〈φ1 ◦ φ2, eA〉
then M |= 〈φ1, e1〉 ◦ 〈φ2, e2〉 ◦ 〈φ3, e3〉 |=M 〈φ1 ◦ φ2, eA〉 (Weak
Monotonicity)

We now propose two inference rule schemata called conjunction
absorption (CA) and disjunction absorption (DA).

〈φ1, e1〉 ∧ . . . ∧ 〈φn, en〉
〈φ1 ∧ . . . ∧ φn,max(0, (

∑n
i=1 ei − (n− 1))〉 CA

〈φ1, e1〉 ∨ . . . ∨ 〈φn, en〉
〈φ1 ∨ . . . ∨ φn,max(e1, ..., en)〉 DA

The soundness of each rule is immediate from Theorem 3. CA and
DA provide sound inference rules to convert collections of bounded
formulas into a single bounded formula. Thus, they provide a means to
consolidate a collection of propositions, for which there are particular
fixed lower-bound probability, to either a single disjunctive proposition
with a fixed lower-bound probability or a single conjunctive proposition
with a fixed lower-bound probability.

2.3. Absorption and System Y

Call the logic resulting from the language Υ+ with the rules CA and
DA System Y. We now identify some properties of System Y.

DEFINITION 3 (Absorption 
A). Define 〈φ1, e1〉 ◦ · · · ◦ 〈φn, en〉 
A

〈φ1 ◦ · · · ◦φn, eA〉 as an instance of either CA or DA, where ◦ ∈ {∧,∨},
〈φ1, e1〉 ◦ · · · ◦ 〈φn, en〉 are premises, 〈φ1 ◦ · · · ◦ φn, eA〉 is the conclu-
sion, and eA is the calculated lower-bound of the absorbed conjunction
(disjunction) of premises.

One may view the absorption relation 
A as a restricted consequence
relation that enjoys the following properties.

PROPOSITION 3. The following properties hold for 
A.
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− 〈φ, e〉 
A 〈φ, e〉
[Reflexivity],

− If 〈φ′, e′1〉 ◦ 〈φ′′, e′′1〉 ≡ 〈ψ′, e′2〉 ◦ 〈ψ′′, e′′2〉 and 〈φ′, e′1〉 ◦ 〈φ′′, e′′1〉 
A

〈γ, e3〉, then 〈ψ′, e′2〉 ◦ 〈ψ′′, e′′2〉 
A 〈γ, e3〉, where φ′ ◦ φ′′ ≡ γ ≡
ψ′ ◦ ψ′′.
[Left Logical Equivalence],

− If 〈ψ, e2〉 |=M 〈γ, e3〉 and 〈φ′, e′1〉 ◦ 〈φ′′, e′′1〉 
A 〈ψ, e2〉
then 〈φ′, e′1〉 ◦ 〈φ′′, e′′1〉 |=M 〈γ, e3〉
[Restricted Right Weakening].

Proof. Reflexivity follows by Corollary 1(i) and Left Logical Equiva-
lence follows from Corollary 1(ii).

For Restricted Right Weakening, suppose the antecedent holds. By
Theorem 3, M |= 〈φ′, e′1〉 ◦ 〈φ′′, e′′1〉 only if M |= 〈ψ, e2〉 only if [[φ′]]M ◦
[[φ′′]]M ⊇ [[ψ]]M . By Corollary 1, e2 ≥ e3 and [[ψ]]M ⊇ [[γ]]M . So 〈φ′, e′1〉 ◦
〈φ′′, e′′1〉 |=M 〈γ, e3〉, by Proposition 2 (weak monotonicity).

Our absorption rules fail to satisfy four well-known properties, namely
Right Weakening, Or, And and Cautious Monotonicity, displayed below
in terms of a relation 
 defined on propositional formulas.

− |=M ψ → γ; φ 
 ψ

φ 
 γ
[Right Weakening]

− γ 
 φ; γ 
 ψ

γ 
 pφ ∧ ψq [And]

− φ 
 γ; ψ 
 γ
pφ ∨ ψq 
 γ

[Or]

− φ 
 ψ; ψ 
 γ
pφ ∧ ψq 
 γ

[Cautious Monotonicity]

The main difference between Right Weakening and Restricted Right
Weakening is the occurrence of |=M in our restricted version in place
of 
A in the conclusion position. Notice that this change is necessary
because the weak monotonicity property for calculated bounds holds
for |=M but does not hold for absorption: DA and CA are rules for
calculating the bounds of a complex bounded formula in its entirety.
Since γ can be a sub-formula of ψ, then e3 may be less than e2, by
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12 Gregory Wheeler

Corollary 1. In such cases 〈γ, e3〉 could not be the absorption of both
〈φ′, e′1〉 ◦ 〈φ′′, e′′1〉 and 〈ψ, e2〉.

The remaining rules fail for absorption on syntactic grounds, which
may be seen immediately if we substitute bounded formulas for propo-
sitional formulas. Only absorbed formulas appear in the conclusion
position of CA and DA, which is incompatible with And, while CA
and DA are configured only to apply to purely conjunctive or purely
disjunctive complex bounded formulas, which is incompatible with the
generality of both Or and Cautious Monotonicity.

The reason that we mention that absorption fails to satisfy these four
properties is that most probabilistic logics are constructed around the
axiom System P (Kraus, Lehmann and Magidor 1990) which consists
of Reflexivity, Left Logical Equivalence, Right Weakening, And, Or, and
Cautious Monotonicity. These remarks suggest that a logic for rational
acceptance constructed around CA and DA will be fundamentally dif-
ferent from most probabilistic logics. We see that CA itself translates
to a restricted version of the conjunction principle of System P, and
cautious monotonicity is not satisfied as a consequence. Thus, System
Y marks a distinction between logics for rational acceptance and logics
for reasoning about probabilities (Halpern 2003). Furthermore, the ap-
proach under development differs from Adams’s system (Adams 1975),
Pearl’s System Z (Pearl 1990), the epistemic probabilistic logic of Fagin,
Halpern and Megiddo (Fagin, et. al. 1990) and epistemic probabilistic
logics of (Halpern 2003), and probabilistic defaults of (Lukasiewicz
2002).

Viewing the relationship between probability and logic in this man-
ner is motivated by observing the logical structure of statistical rea-
soning (Kyburg, Teng and Wheeler, forthcoming). Standard inferential
statistical reasoning provides persuasive examples of reasonable, non-
monotonic inference forms (Kyburg and Teng 1999). It was remarked in
(Wheeler 2004), where the notion of a bounded formula is introduced,
that a default logic designed for this knowledge representation task
should not be expected to satisfy the axioms of System P . The lottery
paradox may be viewed then as a compact demonstration of the conflict
resulting from adopting a system to model rational acceptance whose
axioms satisfy System P .

3. Applying CA and DA

The expressive features of bounded formulas and the rules CA and DA
allow us to observe a distinction that is important for resolving the
paradoxes of rational acceptance. The distinction System Y allows us
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to observe is the difference between the probability of a conjunctive
(disjunctive) event and the conjunction (disjunction) of a collection of
probabilistic events.

Call a conjunction (disjunction) of basic bounded formulas an out
expression and the inner measure of a conjunction (disjunction) an in
expression. (An in expression is simply a bounded formula, whereas an
out expression is a non-nested or “flat” complex bounded formula.)
Thus, the rules CA and DA intuitively tell us how to convert an
out expression to an in expression. Theorem 3 specifies how we may
pass from specific Boolean combinations of basic bounded formulas to
corresponding in expressions.

A consequence of this notation is that out expressions are neces-
sarily of depth 1. However, if we wish to absorb a nested complex
bounded formula, we may do so by applying DA and CA iteratively
on the structure of the complex bounded formula. In this way we may
effectively recover And and Or. To illustrate, consider the following
example.

EXAMPLE 1. The expression

(〈p, e1〉 ∨ 〈q, e2〉) ∧ 〈r ∨ ¬s, e3〉

is depth 2. Thus, the expression may be absorbed in two steps: First
apply DA to the out expression

〈p, e1〉 ∨ 〈q, e2〉

to yield the in expression 〈p∨ q, e′A〉, where e′A = max(e1, e2), and then
CA to the out expression

〈p ∨ q, e′A〉 ∧ 〈r ∨ ¬s, e3〉

to yield the desired in expression 〈(p ∨ q) ∧ (r ∨ ¬s), e′′A〉,where e′′A =
max(0, (e′A + e3)− 1).

Informally, an in expression says that we have specific information
regarding the lower probability for a proposition or event. An out
expression says that we have a collection of in expressions, each with
a specific lower-bound probability. We may interpret a conjunction or
disjunction of in expressions as either an intention to effect the appro-
priate absorption or a conjecture that the corresponding absorption is
sound with respect to some threshold point for acceptance. However,
as remarked above, a conjunction (disjunction) of in expressions isn’t
very informative. This observation motivates the design of the rules CA
and DA and the notion of an out expression. The paradoxes of rational
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14 Gregory Wheeler

acceptance arise from stories that invite us to collapse this distinction
between out and in expressions.

The interesting question raised by viewing the paradoxes in this light
is whether one can define a logic that specifies when, and under what
conditions, we may move from an out expression to an in expression.

In the problem of restricted entailment for rational acceptance, the
rules CA and DA permit any out expression to be combined to make
an in expression while preserving the glb. However, not all absorbed
formula will be of interest: only those with sufficiently high probability
will be candidates for acceptance. Given a threshold point for accep-
tance θ, the left coordinate of an in expression is accepted just in case
the right coordinate is greater than or equal to θ. Hence, with respect
to a threshold point for acceptance θ, a proposition p is accepted if and
only if 〈p, e〉 holds and e ≥ θ.

I now return to the lottery paradox and the paradox of the preface
to describe how this proposal works.

EXAMPLE 2 (Lottery Paradox).
The setup for the lottery—a fair 1000 ticket lottery and a threshold

point for rational acceptance of θ = 0.99—means that when we consider
each ticket T1, ..., T1000 individually, it is rational to accept that each
ticket will lose. Suppose ¬Ti represents that the ith ticket loses. The
lottery setup gives us a set of bounded formulas

L = {〈¬T1, 0.999〉, ..., 〈¬T1000, 0.999〉}

and the problem comes when we are asked to interpret this collection.
The question of how to interpret various combinations of losing tickets
reduces to the question of what applications of DA or CA may be applied
to 〈¬T1, 0.999〉 . . . 〈¬Tk, 0.999〉, for 1 ≤ k ≤ 1000 where eA ≥ θ.

For instance, 〈¬Ti, 0.999〉 ∧ 〈¬Tj , 0.999, 〉 may be absorbed, for any
i, j, since max(0, 0.999 + 0.999 − 1) = 0.998 ≥ θ. Hence all tickets
may be pairwise conjoined: for all i 6= j : 1 ≤ i ≤ j ≤ 1000, applying
CA to any out expression of form 〈Ti, 0.999〉 ∧ 〈Tj , 0.999〉 yields the in
expression 〈¬Ti ∧ ¬Tj , 0.998〉.

Of course, we’re only interested in those absorbed in expressions
where eA is above threshold. Since 0.998 > θ, we know that the ab-
sorption of any pairing in the set L is each above the threshold point θ
for acceptance. We can see that using CA we may determine each in
expression of conjoined tickets both consistent and above the threshold
point θ for acceptance.

One point to notice about this construction is that it is applicable
in cases where we may not know for sure that at most one ticket wins.
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Thus, CA does not presuppose the weak lottery assumption necessary to
the proposal in (Hawthorne and Bovens 1999) to calculate lower bound
probability. For discussion see (Wheeler 2005).

EXAMPLE 3 (The Paradox of the Preface).
The setup for the preface paradox is that an author rationally accepts

each page of an n page manuscript is without a mistake, but holds that
it is rational to accept that there is at least one error appearing in the
n page manuscript. Suppose that ¬Ei represents that there is no error
on page i of the manuscript, and let 〈¬Ei, ei〉 represent that the lower
bound on the probability that ¬Ei is ei. Suppose a threshold point of
acceptance of θ such that

〈¬E1, e1〉 ∧ . . . ∧ 〈¬En, en〉

and for all i : 1 ≤ i ≤ n, 〈¬Ei, ei〉 ei ≥ θ but 〈E1 ∨ ... ∨ En, e
′〉 and

e′ ≥ θ.
The twist to this example is the inclusion of the in expression rep-

resenting the preface statement, namely

〈E1 ∨ ... ∨ En, e
′〉,

where e′ ≥ θ. But, again, it is important not to interpret the Boolean
combination of bounded formulas as entailing the corresponding ab-
sorbed combination. In other words,

〈¬E1, e1〉 ∧ . . . ∧ 〈¬En, en〉 ∧ 〈E1 ∨ . . . ∨ En, e
′〉 (1)

is not necessarily inconsistent.
Incoherence would arise if we used unrestricted out expressions to

carry out successive disjunction eliminations on the bounded proposi-
tion E1 ∨ . . . ∨ En within (1) until a contradiction was derived. But,
before each of these deductive steps can be performed (within the scope
of the bound of some in expression), there is an out expression com-
posed of the preface apology and one of the statements reporting that
a specific page of the book is error-free. There will be an application of
CA of the following form: For some j ≤ n, successive applications of
CA to the expression

〈¬E1, e1〉 ∧ . . . ∧ 〈¬Ej , ej〉 ∧ 〈E1 ∨ ... ∨ En, e
′〉 (2)

will yield the in expression

〈(¬E1 ∧ . . . ∧ ¬Ej) ∧ (E1 ∨ ... ∨ En), eA〉 (3)

where eA = max(0, (e1 + · · ·+ ej + e′)− n). We may, then, resolve the
clause in (3). Since we are restricting ourselves to looking at only those
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16 Gregory Wheeler

absorbed conjunctions that are above threshold and, by hypothesis, (1)
is coherent, j < n. Hence, a procedure that applied CA to expressions
of form (2) would block absorption before the resulting contradictory in
clause could be resolved.

Before concluding, I would like to draw attention to a feature of this
proposal that I think is a positive consequence of the type of approach—
the structural view—that I am advocating. The rules CA and DA are
designed to mark, syntactically, the source of the problem for rational
acceptance and entailment, what I’ve called here absorption. Notice
that my proposed solution does not hinge on artificial features of the
lottery paradox or paradox of the preface thought experiments, but
rather attempts to address the conflict in the principles of rational
acceptance that these paradoxes and their variants exhibit. This frame-
work is applicable if there is no guaranteed winning ticket but only a
likely winner, which was noted in comparison to the example just above;
the framework is applicable to biased lotteries; and it is applicable if
there is more than one accepted but false proposition (e.g., more than
one winning ticket.). So long as you have a threshold point for accep-
tance and you know the lower-bound acceptance point for each of the
propositions that you’ve accepted, then you may consider arguments
formed from collections of so-accepted statements by interpreting their
logical combination and resolving the consequences within the absorbed
in expressions.
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