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Abstract
Both dilation and non-conglomerability have been
alleged to conflict with a fundamental principle of
Bayesian methodology that we call Good’s Principle:
one should always delay making a terminal decision
between alternative courses of action if given the op-
portunity to first learn, at zero cost, the outcome
of an experiment relevant to the decision. In par-
ticular, both dilation and non-conglomerability have
been alleged to permit or even mandate choosing to
make a terminal decision in deliberate ignorance of rele-
vant, cost-free information. Although dilation and non-
conglomerability share some similarities, some authors
maintain that there are important differences between
the two that warrant endorsing different normative
positions regarding dilation and non-conglomerability.
This article reassesses the grounds for treating dilation
and non-conglomerability differently. Our analysis ex-
ploits a new and general characterization result for
dilation to draw a closer connection between dilation
and non-conglomerability.

1 Introduction

Good’s Principle is considered by I. J. Good [8], among
others before him [24, 19, 25], to be a fundamental
principle of rational decision making. Good’s Princi-
ple recommends to delay making a terminal decision
between alternative courses of action if the opportu-
nity arises to learn, at no cost, the outcome of an
experiment relevant to the decision.

Dilation [34, 31, 21] occurs when an interval estimate of
an event E is properly included in the interval estimate
of E conditional on the occurrence of every event of a
measurable partition B. In such circumstances merely
running the experiment to determine the value of B,
whatever the outcome, suffices to render your initial
estimate of E less precise. Should you update your
estimate of E to the less precise estimate? Should
you refuse a free offer to learn the outcome of such an

experiment? Is it rational for you to pay someone to
not tell you?

A probability function p is non-conglomerable [4, 5] for
an event E in a measurable partition B if the marginal
probability of E fails to be included in the closed inter-
val determined by the infimum and supremum of the
set of conditional probabilities of E given each cell of
B. When B is denumerable, any probability function
is non-conglomerable for E in B only if it fails to be
countably additive [4, 5, 26]. In such circumstances
merely running the experiment to determine the value
of B, whatever the outcome, suffices to uniformly in-
crease (or decrease) your initial estimate of E. Is your
initial estimate of E coherent? Is it rational to forgo
the opportunity to learn the experimental outcome of
B?

Even though both dilation [9, 6] and non-
conglomerability [26] have been alleged to conflict with
Good’s Principle, there is a tradition within the impre-
cise probability community to treat each differently.
Walley, for example, argues that conglomerability is a
requirement of rationality in the course of extending
coherent lower previsions to conditional lower previ-
sions. More recently, Zaffalon and Miranda argue that
conglomerability is a requirement of rationality when
an agent’s future commitments and current conditional
beliefs are established together [36]. Either way, in-
stances of non-conglomerability generate violations of
salient dominance principles and allow for the deval-
uation of cost-free information and thus violations of
Good’s Principle [14]. Even so, instances of dilation do
not preclude violations of salient dominance principles
and of Good’s Principle – see §5, below – but dilation
is viewed as a reasonable, even if surprising, feature of
conditional lower previsions [34, §6.4.3]. For Seiden-
feld et al. [26], non-conglomerability raises a challenge
for those who concede that sometimes rationality per-
mits credal states to be representable by numerically
precise probabilities failing to be countable additive.
More specifically, Seidenfeld et al. observe that every



instance of non-conglomerability can be transformed
into a violation of admissibility, a dominance principle
at the heart of the Bayesian enterprise (e.g., Wald, de
Finetti, Savage), and that expected utility maximiza-
tion in such cases admits the devaluation of cost-free
information. However, for some decision rules pro-
posed for imprecise probabilities, such as Γ-maximin,
dilation also invites a devaluation of cost-free informa-
tion. But in this case Seidenfeld recommends to reject
the decision rule rather than dilation [29].

It is true that while failures of conglomerability can
only occur only in infinite partitions, dilation can oc-
cur with respect to finite partitions. This observation
alone, of course, fails to provide an adequate expla-
nation for adopting a view that treats dilation and
non-conglomerability differently with respect to simi-
lar problems. In this paper we challenge the practice of
treating dilation and non-conglomerability differently.
Our analysis appeals to a new and general characteri-
zation result for dilation to draw a closer connection
between dilation and non-conglomerability

The structure of the paper is as follows. In §2 we review
dilation and present our general characterization result
purely in terms of distance from independence. Then,
in §3 we review the conglomerability principle and
rehearse a standard example of non-conglomerability.
In §4, we discuss Good’s Principle in more detail and
introduce a general framework within which to express
Good’s Principle, as it is commonly understood, in
terms of subjective expected utility. Then, in §5 we dis-
cuss various violations of Good’s Principle, with special
attention to two examples in particular, one involving
dilation and the other involving non-conglomerability.
In particular, we argue that the normative standing of
Good’s Principle in the dilation case depends on partic-
ular features of the uncertainty model and the decision
rules used, both of which depend ultimately on the
decision maker’s beliefs, values and goals. We then
turn to an example involving non-conglomerability to
argue that such examples should be treated in the
same fashion, that is, that the normative standing of
conglomerability likewise depends on the features of
the uncertainty model and decision rules the decision
maker uses.

2 Dilation

A lower probability space is a quadruple (Ω,A,P,P)
such that Ω is a set of states, A is an algebra over
Ω, P is a nonempty set of probability functions on
A, and P is a lower probability function on A with
respect to P—that is, P(E) = inf{p(E) : p ∈ P} for
each E ∈ A. The value P(E) is called the lower
probability of E. The upper probability function P is

then defined in the usual manner by stipulating that
P(E) = 1 − P(Ec) for each E ∈ A; the value P(E)
is called the upper probability of E. If P(H) > 0,
then conditional lower and upper probabilities are
defined as P(E | H) = inf{p(E | H) : p ∈ P} and
P(E | H) = sup{p(E | H) : p ∈ P}, respectively. In
the following, we call a collection of events B from A a
positive measurable partition (of Ω) if B is a partition
of Ω such that P(H) > 0 for each H ∈ B.

Let B be a positive measurable partition of Ω. We say
that B dilates E just in case for each H ∈ B:

P(E | H) < P(E) ≤ P(E) < P(E | H).1

In other words, B dilates E just in case the closed
interval [P(E), P(E)] is contained in the open interval
(P(E | H), P(E | H)) for each H ∈ B.

What is remarkable about dilation is the specter of
turning a more precise estimate of E into a less precise
estimate, no matter what event from the partition
occurs.

Next, in §2.1, we rehearse an example from [28] involv-
ing a maximally uncertain event, G, a flip of a fair coin
(whose outcomes form a partition, B) and a pivotal
quantity, E, defined in terms of G and the outcome
of the coin toss. Then, in §2.3, we provide a simple
characterization of dilation in terms of distance from
stochastic independence, followed by a short discussion
of the result.

2.1 Example of Dilation

Suppose G is a highly uncertain event, one with upper
probability close to 1, P (G) = .9, and lower probability
close to 0, P (G) = .1. So,

P (G)− P (G) = 0.8. (1)

Suppose now that B = {H,Hc} is a partition repre-
senting the outcomes of a fairly tossed coin,

P (H) = P (H) = 1
2 = P (Hc) = P (Hc). (2)

In addition to being positively measurable, suppose
the outcomes of the toss are stochastically independent
of our maximally uncertain event. In particular, the
event of the coin landing heads, H, is stochastically
independent of G occurring; hence, for each p ∈ P,

p(G ∩H) = p(G)p(H) = p(G)
2 . (3)

Next let E be the event of either G and H both
occurring or both failing to occur, namely E := (G ∩
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Figure 1: (a) 2x2 Table for an uncertain event (row) and
a fair coin randomizer (column); (b) The event of learning
that the outcome of the coin toss is ‘heads’.

H) ∪ (Gc ∩Hc). The probability of E is determinate:
p(E) = 1

2 . Similarly, for each p ∈ P, p(Ec) = 1/2.

These conditions are represented by the two-by-two
table in Figure 1(a). Here the columns H and Hc

represent the two possible outcomes of the fair coin
toss; the rows G and Gc represent the two outcomes
of our maximally uncertain event; the diagonals E
and Ec describe the two events defined in terms of
the possible outcomes of row and column: E is the
“matching” event of either H and E both obtaining or
neither obtaining, and Ec is the “unmatched” event
of one but not the other obtaining.

Observe that E is dilated by B = {H,Hc}: although
the initial estimate of E is precisely one-half, learning
the outcome of the coin toss, whether heads or tails,
dilates the probability estimate of E to [.1, .9].
Proof - We show that 0.1 = P (E | H) < P (E) = 1/2.

P (E | H) = inf { p(E | H) : p ∈ P }

= inf
{

p ([(G ∩ H) ∪ (Gc ∩ Hc)] ∩ H)
p(H) : p ∈ P

}
= inf

{
p(G ∩ H)

p(H) : p ∈ P
}

= inf
{

p(G)p(H)
p(H) : p ∈ P

}
= 0.1

A similar argument establishes 0.9 = P (E | H) > 1/2,
and the argument holds if instead the coin lands tails,
i.e., P (E | Hc) = 0.1 and P (E | Hc) = 0.9. Thus, E
is dilated by the coin toss, B = {H,Hc}. �

The specific case where the coin lands H is illustrated
in Figure 1(b). Here conditioning on H reduces the
probability that E obtains to the probability that G
obtains, which is highly uncertain.

1While our terminology agrees with that of [11, p. 252], it
differs from that of [31, p. 1141] and [12, p. 412], who call
dilation in our sense strict dilation.

2.2 Measuring Distance from Independence

Given a single probability function p on A and events
E and H with positive probability, the degree to which
two events E and H diverge from stochastic indepen-
dence, if they diverge at all, may be characterized by
a simple measure of distance from stochastic indepen-
dence:

Sp(E,H) := p(E ∩H)
p(E)p(H) .

The measure Sp is simply the covariance of E and
H, Cov(E,H) = p(E ∩H)− p(E)p(H), put in ratio
form. Therefore, Sp(E,H) = 1 just in case E and H
are stochastically independent; Sp(E,H) > 1 when
E and H are positively correlated; and Sp(E,H) < 1
when E and F are negatively correlated. The measure
Sp naturally extends to a set of probability functions
P as follows:

S+
P (E,H) := {p ∈ P : Sp(E,H) > 1};

S−P (E,H) := {p ∈ P : Sp(E,H) < 1};
IP(E,H) := {p ∈ P : Sp(E,H) = 1}.

The set of probability functions IP(E,H) from P with
E and H stochastically independent is called the sur-
face of independence for E and H with respect to P. In
the remainder subscripts will be dropped when there
is no danger of confusion.

2.3 A Simple Characterization of Dilation

In this section, we present simple necessary and suf-
ficient conditions for dilation formulated in terms of
deviation from stochastic independence, which im-
proves upon previous results in [21]. We illustrate
an immediate application of such a characterization
with measures of dilation. To begin, we introduce the
notion of a neighborhood.

Given a lower probability space (Ω,A,P,P), events
E, H ∈ A with P(H) > 0, and ε > 0 define:

P(E|H, ε) := {p ∈ P : |p(E|H) − P(E|H)| < ε};

P(E|H, ε) := {p ∈ P : |p(E|H) − P(E|H)| < ε}.

We call the sets P(E|H, ε) and P(E|H, ε) lower and
upper neighborhoods of E conditional on H with radius
ε, respectively. Thus, a probability function p is an
element of P(E|H, ε) if p(E|H) is within ε of P(E|H),
and similarly for an upper neighborhood.

For the sake of readability in what follows, given a
nonempty set of probabilities P, let P∗ denote co(P),
the weak*-closed convex hull of P. Thus, P∗(E|F, ε) =



co(P)(E|F, ε) and P∗(E|F, ε) = co(P)(E|F, ε). Simi-
larly, let S+

∗ (E,F ) and S−∗ (E,F ) be defined by:

S+
∗ (E,F ) := {p ∈ co(P) : Sp(E,F ) > 1}

S−∗ (E,F ) := {p ∈ co(P) : Sp(E,F ) < 1}.

Given a nonempty set I, we let RI+ denote the set of
elements (ri)i∈I of RI such that ri > 0 for each i ∈ I.
We now state a result characterizing dilation and then
report an immediate corollary.

Theorem 1 Let (Ω,A,P,P) be a lower probability
space, let B = {Hi : i ∈ I} be a positive measurable
partition, and let E ∈ A. Then the following are
equivalent:

(i) B dilates E;

(ii) There is (εi)i∈I ∈ RI+ such that for every i ∈ I :

P∗(E|Hi, εi) ⊆ S−∗ (E,Hi) and
P∗(E|Hi, εi) ⊆ S+

∗ (E,Hi);

(iii) There is (εi)i∈I ∈ RI+ such that for every i ∈ I :

P(E|Hi, εi) ⊆ S−(E,Hi) and
P(E|Hi, εi) ⊆ S+(E,Hi),

where for each i ∈ I, εi ≤ min(εi, εi) and εi is the
unique minimum of |p(E|Hi)− P(E|Hi)| attained on
C+
i =df {p ∈ P∗ : Sp(E,Hi) ≥ 1}, and εi is the

unique minimum of |p(E|Hi)− P(E|Hi)| attained on
C−i =df {p ∈ P∗ : Sp(E,Hi) ≤ 1}. �

Theorem 1 implies that a positive measurable partition
B dilates an event E just in case for each partition
cell H, there are upper and lower neighborhoods of E
conditional on H such that the lower neighborhood of
E conditional on H lies entirely within the subset of
the set of probabilities in question for which E and H
are negatively correlated, while the upper neighbor-
hood of E given H lies entirely within the subset of
the set of probabilities in question for which E and H
are positively correlated. We remark that Theorem 1
holds for arbitrary nonempty sets of probabilities.

When B is a finite positive measurable partition, the
preceding theorem may be simplified.

Corollary 1 Let (Ω,A,P,P) be a lower probability
space, let B = (Hi)ni=1 be a finite positive measurable
partition, and let E ∈ A. Then the following are
equivalent:

(i) B dilates E;

(ii) There is ε > 0 such that for each i = 1, . . . , n:

P∗(E|Hi, ε) ⊆ S−∗ (E,Hi) and
P∗(E|Hi, ε) ⊆ S+

∗ (E,Hi);

(iii) There is ε > 0 such that for each i = 1, . . . , n:

P(E|Hi, ε) ⊆ S−(E,Hi) and
P(E|Hi, ε) ⊆ S+(E,Hi),

where ε ≤ min(εi, εi : i = 1, . . . , n) and εi is the
unique minimum of |p(E|Hi)− P(E|Hi)| attained on
C+
i =df {p ∈ P∗ : Sp(E,Hi) ≥ 1}, and εi is the

unique minimum of |p(E|Hi)− P(E|Hi)| attained on
C−i =df {p ∈ P∗ : Sp(E,Hi) ≤ 1}. �

Thus, when the positive measurable partition B is
finite, the radii εi of Theorem 1 may be replaced by a
single positive radius ε. The preceding corollary also
improves upon a similar result in [21].

Discussion. Theorem 1 and Corollary 1 should
hardly be surprising. The correlation properties that
entail dilation are rather straightforward consequences
of the definition. Moreover, these correlation proper-
ties entail that each dilating partition cell and dilated
event live on the surface of independence under some
probability function from the closed convex hull of the
set of probabilities in question. Although straightfor-
ward, Theorem 1 shows that by looking beyond the
upper and lower supporting hyperplanes P∗(E|H) and
P∗(E|H) to the upper and lower supporting neighbor-
hoods P∗(E|H, ε) and P∗(E|H, ε), it becomes possible
to characterize dilation completely in terms of posi-
tive and negative correlation, achieving a longstanding
goal. The results also show that dilation, properly
understood, is a property of the convex closure of a
set of probabilities.

One may see the generality of Theorem 1 by comparing
it to an earlier result in [35, Result 1]. Observe that
(1) Theorem 1 applies to arbitrary positive measur-
able partitions, whereas [35, Result 1] applies only to
binary partitions; (2) Theorem 1 applies to arbitrary
sets of probabilities, whereas Result 1 just applies to
weak*-closed convex sets of probabilities; and (3) The-
orem 1 presents characterizing conditions—property
(ii) and property (iii)—formulated in terms of upper
and lower neighborhoods, whereas Result 1 gives a
characterizing condition formulated in terms of a patch-
work of infimums and supremums—a point we discuss
further in [21, §4]. Of course, Theorem 1, given its
generality, entails that the characterizing condition of
Result 1 in [35] is logically equivalent to property (ii)—
or property (iii)—of Theorem 1 in the very special case
for binary partitions and weak*-closed convex sets of



probabilities. Yet, in our judgment, the characterizing
condition of Result 1, even with its narrow scope, is
periphrastic. The upshot is that Theorem 1, in spite
of its wide scope, delivers characterizing conditions
which succinctly express the wherefore of dilation.

Last, returning to the simple heuristic example of
dilation we presented in §2, we remark that a straight-
forward calculation of the relevant radii ε1, ε1, ε2, ε2
corresponding to H and Hc, respectively, yields 2

5 .

2.4 Proper and Improper Dilation

It is well known that the familiar univocal notion
of probabilistic independence splinters into a plural-
ity of logically distinct independence concepts [34, 2].
Thus, if a decision modeler knows that one event is
epistemically independent of another – that is, that
each event is epistemically irrelevant to the other –
then he knows that observing the outcome of one
event does not change the estimate in the other, even
though the two events may fail to be stochastically
independent, and thus may admit dilation. In other
words, our characterization results hold for a variety
of extensions—including unknown interaction, irrel-
evant natural extensions, and independent natural
extensions [2]—without discriminating between mod-
els which correctly or incorrectly encode knowledge of
either epistemic irrelevance or epistemic independence.
However, our proposal is that a correctly parame-
terized extension can provide principled grounds for
avoiding the loss of precision by dilation that may oth-
erwise come from updating. So, even if the conditions
for Theorem 1 hold, there may be enough knowledge
about the relationship between the two events in ques-
tion to support a parameterization that defuses the
diluting effect that dilation has from updating. We
therefore distinguish between two kinds of dilation
phenomenon: proper dilation, which occurs within a
model that correctly parameterizes the set of distribu-
tions to reflect what is known about how the events
are interrelated, if anything is known at all, and im-
proper dilation, which occurs within a model whose
parameterization does not correctly represent what is
known about how the events interact.

3 Non-Conglomerability

Given a real-valued finitely additive probability func-
tion p on an (σ-) algebra A over a set of states Ω, a
positive measurable partition B of Ω, and an event E
of A, we say that p is conglomerable for E in B if

inf { p(E|H) : H ∈B}≤ p(E)≤ sup { p(E|H) : H ∈B}

Otherwise we say that p is non-conglomerable for E in
B. So p is non-conglomerable for E in B just in case
p(E) fails to lie in the closed interval [inf { p(E|H) :
H ∈ B}, sup { p(E|H) : H ∈ B}].

Of course, every probability function is conglom-
erable for all events and finite B. Cases of non-
conglomerability only arise for infinite B. It is well-
known that any probability function with an infinite
range is conglomerable for each event E and denumer-
able B just in case it is countably additive. In addition,
any such probability function is non-conglomerable for
some event E and denumerable B just in case it fails
to be disintegrable for E in B—that is, if fails to satisfy
the law of total probability for E in B. These con-
cepts and results can be extended to bounded random
quantities [5] and unbounded random quantities [27].
Further, it should be noted that some probability func-
tions that fail to be countably additive may nonetheless
be conglomerable in arbitrary positive measurable par-
titions. Moreover, in some cases, a nontrivial convex
combination of probability functions, each of which
fails to be conglomerable in a positive measurable
partition, may very well be conglomerable in the par-
tition. Indeed, a nontrivial convex combination of
probability functions, each of which is conglomerable
in a positive measurable partition, may very well fail
to be conglomerable in the partition. To gain control
over these cases, authors investigated conglomerability
within the setting of primitive conditional probability,
which accommodates conditioning events with zero
probability [1, 26, 30]. Next we give an example of
non-conglomerability for a denumerable partition.

3.1 Example of Non-Conglomerability

Following [5],2 let A be the collection of all subsets of
Ω = {0, 1} × N>0, let E = {(1, n) : n ∈ N>0}, and let
B = {Hn : n ∈ N>0}, where Hn = {(0, n), (1, n)} for
each n ∈ N>0. Let p be a finitely-additive probability
function on A such that:

(i) p(E) = 1
2 ;

(ii) p(E ∩Hn) = 1
2n+1 for each n ∈ N>0; and

(iii) p(Ec ∩Hn) = 0.

Then p(E) < inf{p(E|Hn) : n ∈ N>0} = 1, so p is
non-conglomerable for E in the denumerable partition
B.

2This example seems to have entered the literature in [3,
p. 205], although de Finetti there reports that Lester Dubins
presented the example in a letter to L.J. Savage.



4 Good’s Principle and Expected
Utility

In Foundations of Statistics, Savage considers the dif-
ference between a basic decision problem, in which an
agent is to choose to perform one action from among
several he judges to be available for choice, and a de-
rived decision problem, in which the agent is to choose
from the same basic actions, but only after consider-
ing the associated conditional expected utilities for
the basic action given each possible outcome of some
experiment. “It is almost obvious,” Savage remarks,
“that the value of a derived problem cannot be less
than, and typically is greater, than the value of the
basic problem from which it is derived” [25, §6.2]. Sav-
age thereupon formulates and proves what has become
a fundamental principle of Bayesian methodology [25,
Chapter 7]. Although Ramsey [24] aired the idea of
this result in unpublished work and many others have
reaffirmed it following Savage’s seminal work (e.g., [22],
[19]), Good famously defended the principle in a short
article published in the 1960s [8] – and there has been a
rich discussion ever since [7, 33, 20, 28, 9, 32, 13]. Fol-
lowing Stigler’s law of eponymy, let us briefly explain
the basic idea of Good’s Principle.

4.1 Formalizing Good’s Principle

Here is the set up. Suppose that at some time t1 you
are to face a choice among several courses of action
a1, . . . , an. Prior to this choice, however, you face a
decision at some time t0 before t1 between (i) choosing
from among several courses of action a1, . . . , an at time
t1 or (ii) choosing from among the same courses of
action a1, . . . , an at some later time t2 after you have
observed, at no cost, the outcome of an experiment E.

According to Good’s Principle, Bayesian standards pro-
hibit you from rejecting the opportunity to choose from
among a1, . . . , an at t2 after observing the outcome
of the experiment E. In addition, if the experimen-
tal outcome might affect your choice from among the
courses of action, then Bayesian standards prohibit
you from deciding to choose from among a1, . . . , an
at t1. In short, to be a Good Bayesian, take Good’s
advice: accessible cost-free information relevant to a
decision should never be ignored.

As a piece of Bayesian legislation, Good’s Principle is
expressed in the legalese for codifying norms of classical
subjective expected utility theory. In order to express
Good’s Principle in the language of subjective expected
utility, we first introduce the formal framework we shall
use in our discussion. This framework is sufficiently
expressive for our purposes and will enable us to carry
out our discussion while remaining neutral over further

controversial matters unrelated to our concerns.

Let Ω be a set of states corresponding to a collection of
hypotheses which are individually consistent, mutually
exclusive, and collectively exhaustive relative to your
state of certainty at time t0. A set of actions A is
said to be a decision problem for you at time t if it
consists of all actions you judge to be available for
you to choose. Suppose that for each action a from A
and each state ω in Ω, you have identified a unique
consequence σ(a, ω) to be relevant for evaluating the
action’s success in promoting the goals and values you
endorse. So, you recognize that if you augment your
state of certainty with the hypothetical supposition
that you have implemented action a and state ω ob-
tains, your transformed state of certainty commits you
to being certain that consequence σ(a, ω) prevails.

We presume that you endorse a standard for decision
making that commits you to identifying a nonempty
subset c(A) of your feasible actions A you judge to be
admissible, or acceptable for choice, given your beliefs,
values and goals.

Turn now to Good’s Principle illustrated in Figure 2.
Suppose that you endorse subjective expected utility
maximization as your standard. To sidestep some
technical issues, suppose in particular that your judg-
ments of admissibility can be represented in terms of
subjective expected utility maximization with respect
to a real-valued expectation Ep[ · ] agreeing with a real-
valued probability function p defined on a Boolean
algebra over the set of states and a real-valued utility
function u defined over the set of consequences.3

O

A E

A
σ σ σ

A
σ σ σ

A
σ σ σ

σ(a1, ωi)
a1

σ(a2, ωi)

a2

σ(an, ωi)

. . . an

o1 o2

e1

e2 e3 . . .

Figure 2: Illustration of Good’s Principle

At time t0 you confront a decision problem O =
{o1, o2}. If you implement option o1 at time t0,
then at time t1 you will face a decision problem
A = {a1, . . . , an} without observing the outcome of
experiment E. If you implement option o2 at time t0,
then at time t2 you will face the same decision problem

3Often a uniqueness result for probabilities and utilities
accompanies the representation result (asserting, for example,
that the probability function is unique and that the utility
function is unique up to a positive affine transformation).



A after observing the outcome of experiment E. Now
under the hypothesis N that at t1 you face decision
problem A after implementing option o1 at t0 (not
observing the outcome of experiment E), let c(A|N)
denote the set of admissible options given N (where ◦
denotes functional composition):

c(A|N) = arg max
a∈A

Ep( · |N)

[
(u ◦ σ)(a, p(dω|N) )

]
.

Similarly, under the hypothesis Ki that at t2 you face
decision problem A after implementing option o2 at
t0 and observing outcome ei of experiment E at t1,
let c(A|Ki) denote the set of admissible options given
Ki:

c(A|Ki) = arg max
a∈A

Ep( · |Ki)

[
(u ◦ σ)(a, p(dω|Ki) )

]
.

Good’s principle assumes that at t0 you are certain,
regardless of whether or not you choose to observe
the outcome of experiment E, that you will choose an
option A which maximizes your expected utility, that
your preferences over consequences remain unchanged,
and that your beliefs given hypotheses accord with
Bayesian conditionalization. Your expectation of (1)
your maximum conditional expected utility of choosing
from A given experiment E is not less than your ex-
pectation of (2) your maximum conditional expected
utility of choosing from A under option o1. That is,
o2 ∈ c(O), the set of admissible options from O. More-
over, your expectation of (1) is strictly greater than
(2) unless there is an action from A that maximizes
conditional expected utility from A regardless of the
experimental outcome of E. In other words, unless the
experiment is irrelevant, c(O) = {o2}.

4.2 Remarks on Conditional Probabilities

We wish to remark that your conditional probabil-
ity judgments, whether precise or imprecise, concern
only your commitments at the initial time t0. In our
analysis we adopt a distinction made by Isaac Levi,
and suggested, at least roughly, by many others.4
Specifically, we interpret your conditional probability
judgments in one of two ways. First, according to
the called-off interpretation, your conditional proba-
bility judgment given H expresses your commitment
at time t0 to specific unconditional attitudes contin-
gent on the occurrence of H. According to de Finetti’s
theory of previsions, for example, your conditional
probability assessment of an event E given an event
H at a particular time t0 expresses your unconditional
commitment at time t0 to judge contracts concerning
E that are “called-off” if H does not occur, where

4See, for example, [17, 18] and [23, 22, 10, 16, 34]; for a
summary of Levi’s ideas, see [15, Appendix A].

they are posited to be nil. Alternatively, according to
the hypothetical interpretation, your conditional prob-
ability judgment given H expresses your commitment
at time t0 to specific attitudes on the hypothetical
supposition that H obtains. We contrast these two
interpretations of conditional probability judgment
with a third temporal interpretation which expresses
your future commitment to attitudes upon observing
that H obtains. In the sequential decision problems
discussed in this paper, your current (at t0) condi-
tional probability judgments given a (possibly) future
event H express your assessments on the hypothetical
supposition that H is true. Similar remarks apply
to other conditional judgments you endorse, such as
your conditional value judgments and your conditional
assessments of admissibility.

In our view, the question whether conglomerability
is an appropriate normative standard for evaluating
probability judgments in the senses of interest in this
paper remains unsettled.

5 What’s so good about Good’s
Principle?

Although Good’s Principle continues to be thought of
as a cornerstone of orthodox Bayesianism by critics
and champions alike, we maintain that the principle is
not ironclad. In this section we consider two examples
of violations of Good’s Principle in some detail, one
involving dilation, another, non-conglomerability.

5.1 Good’s Principle and Dilation

Return to the dilation example from [28] that we began
in §2.1. Recall that E is defined as the event of either
the highly uncertain event G and the fair coin toss
yielding the event H both occurring or both G and
H failing to occur, that is E := (G ∩ H) ∪ (Gc ∩
Hc). Recall too that the probability of E and the
probability of H are each determinate, namely p(E) =
1
2 = p(H), whereas the probability of G is highly
uncertain, namely P (G) = 0.9 and P (G) = 0.1.

Now suppose that at t0 you face a decision problem
O = {o1, o2}, where option o1 is a basic decision
problem A whereby you are to choose at t1 between
two acts: a1, which pays you $1 if E occurs and ‘pays’
you −$1 if Ec, i.e., σ(a1, E) = $1 and σ(a1, E

c) =
−$1;5 or the act a2 which ‘pays’ you a constant −$0.50.
Assume that your utility is linear in dollar amounts
with u($x) = x. See Figure 3.

In this basic decision problem A, which is the result
5Here we abuse our notation by writing σ(a,E) = $1, for

instance, to express that σ(a, ·) is a constant $1 on E.



of implementing option o1, the subjective expected
utility of a1 is $0 and the subjective expected utility
of a2 is −$0.50. So, a1 is uniquely admissible from A:
receiving nothing is better than paying 50 cents.

O

A

o1

$1 if E
−$1 if Ec

−$0.50

a2a1

E

o2

A

H

$1 if E
−$1 if Ec

a1

−$0.50

a2
A

Hc

−$0.50

a2

$1 if E
−$1 if Ec

a1

Figure 3: A Sequential Decision Example.

Turn now to option o2, whereby at t2 you face a de-
rived decision problem conditional on the outcome of
experiment E. That is, you are confronted with the
same decision problem A at t2 after learning (only)
thatH obtains orHc obtains at t1. But the derived de-
cision problem A, which is the result of implementing
option o2, is different from the basic decision prob-
lem A: in the derived decision problem the act a1 is
inadmissible against a2. Why? Because in the basic
decision problem p(E) = 1/2, but in the derived deci-
sion problem E is dilated by E to 0.1 and 0.9: whether
the outcome of the fair coin toss is heads or tails, E
conditional on that outcome is highly uncertain. Thus,
in the derived decision problem, there are probability
mass functions p ∈ P whereby p(Ec) is .9, in which
case the minimum expected utility of a1 is −$0.80. So,
in the derived decision problem, by Γ-Maximin, a2 has
a higher minimum expected value than a1 regardless
of the outcome of the experiment, E.

Assume that a decision maker is certain that she will
not change her preferences, will update her belief state
by Generalized Bayesian conditionalization, and that
she will choose to maximize her minimal expected util-
ity (Γ-Maximin). Then, in a pairwise choice between
a1 of the basic decision problem determined by option
o1, which has an expected value of zero, and a2 of
the derived decision problem determined by option
o2, which has an expected value of −$0.50, observing
cost-free information at t1, i.e., learning the outcome
of the fair coin toss E, is devalued. Here we have a
case where the decision maker would strictly prefer
not to receive cost-free information!

Discussion. Although in finite spaces some decision
rules, including Γ-Maximin, require decision makers to
reject the opportunity to observe cost-free information
before making a decision, others merely permit decision
makers to reject the opportunity to observe cost-free
information before making a decision. For example,
E-Admissibility permits, but never requires, you to
reject an opportunity to observe cost-free information
before making a decision. Even so, E-admissibility
supplemented with a secondary criterion for selecting
among E-Admissible options—namely, to maximize ex-
pected utility with respect to a least informative distri-
bution from among E-Admissibility options—respects
the value of (cost-free) information, and therefore man-
dates that decision makers abide by Good’s Principle.
So, the first point to note is that dilating probabilities
can be paired with a variety of decision rules, some
abide by Good’s Principle, others do not.

The second point to emphasize is that E and H are
not stochastically independent, so the basic (o1) and
derived (o2) forms of the decision problem A are im-
portantly different. (If the uncertainty in G were
represented by a single probability rather than a set of
probabilities, then the two forms would be equivalent.)
From Theorem 1 we see that the association between
E and H is the key to dilation; the effects one sees
from evaluating conditional judgments merely are a
consequence. Performing the experiment E reveals to
you the extent of your uncertainty about the depen-
dence of E on the experimental outcomes of E. How
knowledge of this particular form of uncertainty affects
decision making will depend on the decision maker’s
beliefs, values and goals.

5.2 Good’s Principle and
Non-Conglomerability

Suppose that at t0 you face a decision problem O =
{o1, o2} as in the previous section, here with decision
problem A = {a1, a2} and experiment E = {Hn : n ∈
N>0}. Action a1 pays you $1 if E occurs and ‘pays’
you −$1 if Ec, while action a2 ‘pays’ you a constant
−$0.50 i.e., σ(a1, E) = $1 and σ(a1, E

c) = −$1 and
σ(a2, E) = −$0.50 and σ(a2, E

c) = −$0.50.

Now, under the hypothesis that at t1 you face the
decision problem A without observing the outcome of
experiment E, your subjective expected utility of a1
is $0, while your subjective expected utility of a2 is
−$0.50. So you judge a1 to be uniquely admissible
from the basic decision problem A. That is, c(A|N) =
{a1}, where N is the hypothesis that at t1 you have
implemented option o1.

Under the hypothesis that at t2 you face the decision
problem A after observing outcome Hi of E, your



subjective expected utility of a1 is −$1, while your
subjective expected utility of a2 remains −$0.50. So
you judge a2 to be uniquely admissible from the de-
rived decision problem A. That is, c(A|Ki) = {a2},
where Ki is the hypothesis that at t2 you face the
decision problem A after implementing option o2 at t0
and observing outcome ei of experiment E at t1. Thus,
assuming that you are certain you will not change your
preferences, that you will update your belief state by
Bayesian conditionalization, and that you will maxi-
mize subjective expected utility, option o1 has constant
utility $0 and option o2 has constant utility −$.50. In
other words, c(A) = {o1}: at t0 you judge that choos-
ing from A without observing the outcome of E to be
exclusively admissible for choice.

Discussion. One might argue that there are sig-
nificant differences between failures of Good’s Prin-
ciple due to dilation and failures due to non-
conglomerability. For instance, in the case of dilation,
some decision rules respect Good’s Principle and some
do not, which has been cited as grounds for modifying
particular decision rules rather than the modifying the
uncertainty model. In the case of non-conglomerability,
it may appear that there is a disanalogy. The standard
reply to cases of non-conglomerability is to modify the
uncertainty model, namely by imposing countable ad-
ditivity, rather than to modify the expected utility
maximization, which many take for granted. What
are the grounds for adjudicating between these two
cases?

6 Conclusion

In closing, there are three general points to make.
First, notice that there are several familiar approaches
that do not countenance imprecise probabilities but
which nevertheless require decision makers to forgo the
opportunity to observe cost-free information before
making a decision, and some of those approaches do so
even in finite spaces. Second, while Good’s Principle
is often implicated in learning or sequential decision
making, Good’s Principle itself is a synchronic, con-
firmational rule about an agent’s state of belief at a
particular time, rather than a temporal rule regulating
updating of an agent’s state of belief in light of an ob-
servation. Similarly, dilation is likewise characterized
synchronically, rather than dynamically.

Finally, what is the normative standing of Good’s
Principle? We believe it is not an obvious general
principle of rationality, and that the classical argu-
ment strategies for establishing the principle rest on
strong structural assumptions, not only about a deci-
sion maker’s adherence to expected utility maximiza-
tion, but also about the decision maker’s beliefs about

her future preferences, future belief states, and future
decision strategies. Although Good’s Principle is fa-
miliar, the foundations for its (still) wide acceptance
are not; indeed, there appear to be a host of reason-
able exceptions to Good’s Principle, even within the
standard setting of utility maximization. For these
reasons, we are puzzled why some authors still ele-
vate Good’s Principle to a general normative principle
while remaining indecisive about the normative status
of (merely) finitely additive probabilities.
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