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Abstract

While in principle probabilistic logics might be applied to solve a range
of problems, in practice they are rarely applied at present. This is per-
haps because they seem disparate, complicated, and computationally in-
tractable. However, we shall argue in this programmatic paper that sev-
eral approaches to probabilistic logic fit into a simple unifying framework:
logically complex evidence can be used to associate probability intervals
or probabilities with sentences.

Specifically, we show in Part I that there is a natural way to present
a question posed in probabilistic logic, and that various inferential pro-
cedures provide semantics for that question: the standard probabilistic
semantics (which takes probability functions as models), probabilistic ar-
gumentation (which considers the probability of a hypothesis being a log-
ical consequence of the available evidence), evidential probability (which
handles reference classes and frequency data), classical statistical inference
(in particular the fiducial argument), Bayesian statistical inference (which
ascribes probabilities to statistical hypotheses), and objective Bayesian
epistemology (which determines appropriate degrees of belief on the basis
of available evidence).

Further, we argue, there is the potential to develop computationally
feasible methods to mesh with this framework. In particular, we show in
Part II how credal and Bayesian networks can naturally be applied as a
calculus for probabilistic logic. The probabilistic network itself depends
upon the chosen semantics, but once the network is constructed, common
machinery can be applied to generate answers to the fundamental question
introduced in Part I.
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Part I

Probabilistic Logics

1 Introduction

In a non-probabilistic logic, the fundamental question of interest is whether a
proposition ψ is entailed by premise propositions ϕ1, . . . , ϕn:

ϕ1, . . . , ϕn |≈ ψ?

A probabilistic logic (or progic for short) differs in two respects. First, the
propositions have probabilities attached to them. Thus the premises have the
form ϕX , where ϕ is a classical proposition andX ⊆ [0, 1] is a set of probabilities,
and each premise is interpreted as ‘the probability of ϕ lies in X’.1 Second, the
analogue of the classical question,

ϕX1
1 , . . . , ϕXnn |≈ ψY ?

is of little interest, because while there is often a natural conclusion ψ under
consideration, there is rarely a natural probability set Y presented by the prob-
lem at hand since there are so many possible candidates for Y to choose from.
Rather, the question of interest is the determination of Y itself:

ϕX1
1 , . . . , ϕXnn |≈ ψ? (1)

That is, what set Y of probabilities should attach to the conclusion sentence ψ,
given the premises ϕX1

1 , . . . , ϕXnn ? This is a very general question, which will
be referred to as the Fundamental Question of Probabilistic Logic, or simply as
Schema (1).2,3

Part I of this paper is devoted to showing that the fundamental question
outlined above is indeed very general, providing a framework into which several
common inferential procedures fit. Since the fundamental question of probabilis-
tic logic differs from that of non-probabilistic logic, different techniques may be
required to answer the two kinds of question. While proof theory is usually
invoked to answer the questions posed in non-probabilistic logics, in Part II we
show that probabilistic networks can help answer the fundamental question of

1This characterisation of probabilistic logic clearly covers what are called external progics
in [153, §21]—the probabilities are metalinguistic, external to the propositions themselves.
But it also covers internal progics, where the propositions involve probabilities (discussed in
[60], for example), and mixed progics, where there are probabilities both internal and external
to the propositions.

2In asking what set of probabilities should attach to the conclusion, we are restricting
our attention to logic rather than psychology. While the question of how humans go about
ascribing probabilities to conclusions in practice is a very interesting question, it is not one
that we broach in this paper.

3In our notation, the probabilities are attached to the propositions ϕ1, . . . , ϕn, ψ, not to
the entailment relation. However, in the literature one sometimes sees expressions of the form

ϕX1
1 , . . . , ϕXnn |≈ Y ψ [146, §2.2–2.3]. Our choice of notation is largely a question of convenience:

in our notation the premises and conclusion turn out to be the same sort of thing, namely
propositions with attached probabilities, and there is a single entailment relation rather than
an uncountable infinity of entailment relations; but of course from a formal point of view the
two kinds of expression can be used interchangeably.
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probabilistic logic. The programme of this paper—namely that of showing how
the fundamental question can (i) subsume a variety of inferential procedures and
(ii) be answered using probabilistic networks—we call the progicnet programme.

1.1 The Potential of Probabilistic Logic

Due to the generality of Schema (1), many problem domains would benefit from
an efficient means to answer its question—any problem domain whose structure
has a natural logical representation and whose observations are uncertain in
some respect. Here are some examples. In the philosophy of science we are
concerned with the extent that a (logically complex) conclusion hypothesis is
confirmed by a range of premise hypotheses and evidential statements which
are themselves uncertain. In bioinformatics we are often interested in the prob-
ability that a complex molecule ψ is present, given the uncertain presence of
molecules ϕ1, . . . , ϕn. In natural language processing we are interested in the
probability that an utterance has semantic structure ψ given uncertain semantic
structures of previous utterances and uncertain contextual factors. In robotics
we are interested in finding the sequence of actions of a robot that is most likely
to achieve a goal given the uncertain structure of the robot’s surroundings. In
expert systems we are interested in the probability to attach to some prediction
or diagnosis given statistical knowledge about past cases. The list goes on.

Unfortunately, this potential of probabilistic logics has not yet been ex-
ploited. There are a number of reasons for this. First, current probabilistic
logics are a disparate bunch—it is hard to glean commonalities to see how they
fit into a general framework, and hard to see how a solution to the general
problem of probabilistic logic would specialise to each individual logic [146, 153,
§21]. Second, probabilistic logics are often hard to understand: while prob-
abilistic reasoning is well understood and so is logical reasoning, when these
two components interact in formalisms that combine them, their complexities
compound and a great deal of theoretical work is required to determine their
properties. Third, probabilistic logics are often thwarted by their computational
complexity. While they may integrate probability and logic successfully, it may
be very difficult to determine an answer to a question such as that of Schema (1).
Sometimes this is because a probabilistic logic seeks more generality than is re-
quired for applications; but often it is no fault of the logic—probabilistic and
logical reasoning are both computationally infeasible in the worst case, and their
combination is no more tractable.

1.2 Overview of the Paper

In this paper we hope to address some of these difficulties. In Part I we show how
a range of inferential procedures fit into a general framework for probabilistic
logic. We will cover the standard probabilistic semantics for probabilistic logic
in §2, in §3 the support-possibility approach of the probabilistic argumentation
framework, evidential probability in §4, inference involving statistical hypothe-
ses in §5 and §6, and objective Bayesian epistemology in §7. The background to
each procedure will be discussed in §X.1, where X ranges from 2 to 7; note that
§2.1 contains prerequisites for the other sections and should not be skipped on a
first reading. In §X.2 we show how a key question of each inferential procedure
can be viewed as a question of the form of Schema (1). In §X.3 we will show
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the converse, namely that each inferential procedure can be viewed as providing
semantics for the entailment relation |≈ found in this schema.

We permit a generic notion of entailment |≈ which is weaker than that of
classical logic. Generally, the entailment ϕX1

1 , . . . , ϕXnn |≈ ψY holds if all models
of the left-hand side satisfy the right-hand side, where suitable notions of model
and satisfy are filled in by the inferential procedure in question. In this paper we
distinguish between non-monotonic and monotonic entailment relations. Mono-
tonicity holds where ϕX1

1 , . . . , ϕXnn |≈ ψY implies ϕX1
1 , . . . , ϕXnn , . . . , ϕXmm |≈ ψY

for m≥n. Entailment under the standard semantics is monotonic, for example,
whereas (first-order) evidential probability and objective Bayesian epistemology
are non-monotonic.4

Roughly speaking, the approaches provide the following differing semantics.
Under the standard semantics, a model is simply a probability function defined
over the logical language of the propositions in the premises and conclusion,
and ϕX1

1 , . . . , ϕXnn |≈ ψY iff each probability function that satisfies the left-hand
side also satisfies the right-hand side, i.e., iff each probability function P for
which P (ϕ1) ∈ X1, . . . , P (ϕn) ∈ Xn yields P (ψ) ∈ Y . In the probabilistic
argumentation framework, one option for the entailment to hold is if Y con-
tains all the probabilities of the worlds for which the left-hand side forces ψ
to be true. According to second-order evidential probability, where the ϕi are
statistical statements and logical relationships between classes and ψ is the as-
signment of first-order evidential probability on those premises, the entailment
holds if whenever the risk-level of each φi is contained in Xi, the risk-level of
ψ is contained in Y . According to fiducial probability, the premises can either
be spelled out in terms of functional models and data, where the conclusion
concerns a bandwidth of probability and the entailment holds if the data and
model warrant the bandwidth, or in terms of an assignment of first-order ev-
idential probability. According to Bayesian statistical inference the premises
contain information about prior probabilities and likelihoods which constitute a
statistical model, the conclusion denotes posterior probabilities, and the entail-
ment holds if for every probability function subsumed by the statistical model
of the premises, the conclusion follows by Bayes’ theorem. According to objec-
tive Bayesian epistemology, the entailment holds if some probability function P
gives P (ψ) ∈ Y , from those functions that satisfy the constraints imposed by
the premises and are otherwise maximally equivocal in the sense laid out in §7.

The various inferential procedures covered in this paper provide different
semantics for probabilistic logic, nevertheless they have some things in common.
First, in each case the premises on the left-hand side of Schema (1) are viewed
as evidence, while the proposition ψ of the conclusion is a hypothesis of interest.
Second, each account admits of a formal connection to the mathematical concept
of probability. We use the term probability exclusively in this mathematical
sense of a measure that satisfies the usual Kolmogorov axioms for probability.
While from a conceptual point of view several accounts may distance themselves
from this standard notion of probability, they retain a formal connection to

4We can call an entailment relation |≈ decomposable if ϕX1
1 , . . . , ϕXnn |≈ ψY implies that

each model of each of the premises individually is a model of the conclusion: for all interpre-

tations I (as defined by the semantics in question), if I |≈ ϕX1
1 , . . . , I |≈ ϕXnn then I |≈ ψY .

A decomposable entailment relation is monotonic, but the reverse need not be the case. The
standard semantics provides an example of a decomposable entailment relation. Decompos-
ability does not play a major role in this paper, but we include the notion for completeness.
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probability, and it is this connection that can be exploited to provide a syntactic
procedure for determining an answer to the question of Schema (1).5 This task
of determining an answer to Schema (1) is the goal of Part II. The syntactic and
algorithmic nature of this task are points in common with the notion of proof
in classical logic, but as we saw at the start of this section, the question being
asked by Schema (1) is slightly different to that being asked of classical logic.

We will pay particular attention to the case in which the sets of probabilities
X1, . . . , Xn, Y are all taken to be convex , i.e., sub-intervals of [0, 1]. The ad-
vantage of this framework is that it is general enough to cover many interesting
approaches to combining probability and logic, while being narrow enough to
take a serious stab at the computational concerns. It is not as general as it might
be: the sets X1, . . . , Xn, Y could be taken to be arbitrary sets of probabilities, or
sets of gambles bounded by lower and upper previsions [26, §2.1–2.2], but most
approaches only require convex sets of probabilities.6 Moreover, by focussing
on convex sets, we can apply the machinery of probabilistic networks to address
the computational challenge. In Part II we shall show how credal and Bayesian
networks can be applied to more efficiently answer questions of the form of
Schema (1). §8 presents common machinery for using a probabilistic network to
answer the fundamental question. The algorithm for constructing the network
itself depends on the chosen semantics and is discussed in subsequent sections
of Part II.

1.3 Philosophical and Historical Background

The approaches under consideration here take different stances as to the inter-
pretation of probability. The standard semantics leaves open the question of the
nature of probabilities—any interpretation can be invoked. Probabilities in the
probabilistic argumentation framework are also not tied to any particular inter-
pretation, but then the degree of support of a proposition is interpreted as the
probability of the scenarios in which the evidence forces the truth of the propo-
sition. Evidential probability and classical statistical inference are based on the
frequency interpretation of probability. Bayesian statistical inference is devel-
oped around the use of Bayes’ rule, which requires prior probabilities; these prior
probabilities are often given a Bayesian—i.e., degree-of-belief—interpretation,
but the formal apparatus in fact permits other interpretations. On the other
hand objective Bayesianism fully commits to probabilities as degrees of belief,
and, following Bayes, these probabilities are highly constrained by the extent
and limits of the available evidence.

We should emphasise that the probabilistic logic to be presented here is cer-
tainly not the first one around. In fact the history of the notion of probability is
intimately connected to probabilistic logics, or systems of reasoning with prob-
ability. According to Galavotti [43], the first explicit versions of a probabilistic
logic can be found in nineteenth century England, in the works of De Morgan,
Boole, and Jevons. Generally speaking, they perceived probability as a measure

5We should emphasize that we do not seek to revise the conceptual foundations of each
approach—our point is that despite their disparate philosophies, these approaches have a lot
in common from a formal point of view, and that these formal commonalities can be harnessed
for inference.

6One might even generalise further by takingX1, . . . , Xn, Y to be arbitrary representations
of uncertainty, but if we forfeit a connection with probability, we leave the realm of probabilistic
logic.
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of partial belief, and they thought of probability theory as providing an objec-
tive and normative guide to forming conclusions on the basis of partial beliefs.
Logicist probabilists of the early twentieth century, such as Keynes, Koopman
and Ramsey, developed their ideas from these two starting points. While Keynes
took probability theory as describing the rules of partial entailment, and thus
as the degree to which evidence objectively supports some conclusion, Ramsey
took it as providing rules for maintaining coherent partial beliefs, thus leaving
room for differing opinions and surrendering some objectivity to the subjectivity
of an individual’s beliefs.

The logical interpretation of probability, as advanced by Keynes and Koop-
man, was rarely embraced by scientists in the early twentieth century, although
Harold Jeffreys can be viewed as an important exception. But the approach
was eventually picked up by philosophers, most notably in the probabilistic
logics proposed by Carnap [11, 12, 14] and his followers. Carnap’s systems
focus primarily on a logical relationship between an hypothesis statement and
an evidence statement, and are one approach to formalizing Keynes’s idea that
probability is an objective measure of partial entailment. The subjective view
of Ramsey, on the other hand, has become progressively more popular in the
latter half of the twentieth century. Developed independently by Savage and
de Finetti, this view of probability has gained popularity among probabilistic
logicians with an interest in inductive reasoning, with Howson [64] as a strong
representative, and among decision theorists such as Jeffrey [71].

It soon became apparent that there were several kinds of question raised
by probability—e.g., whether ignorance is distinguishable from risk, whether
assessments of probability are distinguishable from decision, and what role con-
sistency and independence play in probability assignment. The Dempster-Shafer
theory [128] and the theory of Imprecise Probability [139] are two important the-
ories embracing the first distinction, which raises ramifications for the remaining
two, all of which were the subject of work on interval-valued probability in the
post-war era by Tarski, C.A. Smith, Gaifman, Levi, Kyburg, Raiffa, and Arrow.

Recent work in artificial intelligence has contributed to our theoretical un-
derstanding of probability logic, particularly with the work of Fagin, Halpern,
Bacchus, Grove, Koller, and Hailperin [4, 31, 32, 61, 56], Kyburg [83, 86, 88],
Lehman and Magidor [93], Pearl [110, 111], Pollock [113], Nilsson [107], as well
as our practical understanding of its application to learning from data [102, 103],
causal reasoning [110, 132], multi-agent systems [34], robotics [134], logic pro-
gramming [73], among other fields.

1.4 Notation and Formal Setting

In this paper we will primarily be focussing on sets of variables, propositional
languages, and simple predicate languages. Logical languages will be denoted
by the letter L. We will represent variables by capital letters near the beginning
of the alphabet, A,B,C, etc. A propositional variable is a variable A that takes
one of two possible values, true or false. The notation a or a1 will be used to
denote the assignment A = true, while ā or a0 signifies A = false. Given propo-
sitional variables A1, . . . , An, a propositional language contains sentences built
in the usual way from the assignments a1, . . . , an and the logical connectives ¬,
∧, ∨, →, and ↔. An elementary outcome ω is an assignment ae11 · · · aenn where
e1, . . . , en ∈ {0, 1}. An atomic state α is a sentence that denotes an elementary

9



Symbol Entailment Relation

|≈ generic entailment
|m non-monotonic entailment
|l monotonic entailment
|= decomposable, monotonic entailment

Table 1: Entailment Relations

outcome: α is a conjunction ±a1∧· · ·∧±an where ±ai is ai (respectively ¬ai) if
ei = 1 (respectively ei = 0) in the elementary outcome. Given e = (e1, . . . , en),
we let αe denote the atomic state describing the elementary outcome ae11 · · · aenn .
Thus superscripts are used to describe particular assignments of values to vari-
ables.

Predicates will be represented by U, V,W , constants by t, t1, t2, . . ., and logi-
cal variables by x, y, z. Expressions of the form U(t) and V (x) determine (single-
case and, respectively, repeatably-instantiatable) propositional variables; Ut and
V x will be used to denote the positive assignments U(t) = true and V (x) = true.
Finitely many such atomic expressions yield a propositional language. Sentences
of a logical language will be denoted by Greek letters ϕ,ψ, etc., and capital
Greek letters—e.g., Γ, ∆, Θ, Φ—will be used for sets of sentences. Again, the
letter α will be reserved for an atomic state or state description, which is a
conjunction of atomic literals, e.g., Ut1 ∧ ¬V t2 ∧ ¬Wt3, where each predicate
in the language (or in a given finite sublanguage) features in α. Entailment
relations are denoted as shown in Table 1.

We shall use P,Q,R, S to denote probability functions, P for a set of prob-
ability functions, and K for a credal set, i.e., a closed convex set of probability
functions. X,Y, Z will be sets of probabilities and ζ, η, θ parameters in a proba-
bilistic model. E,F,G,H will be used for subsets and ω, ω1, ω2, . . . for elements
of the outcome space Ω. Algebras of such subsets, finally, are denoted by E , F .

2 Standard Probabilistic Semantics

What we call the standard probabilistic semantics (or standard semantics for
short) is the most basic semantics for probabilistic logic. According to the
standard semantics, an entailment relation

ϕX1
1 , . . . , ϕXnn |≈ ψY .

holds if all probability functions that satisfy the constraints imposed by the
left-hand side also satisfy the right. The standard semantics serves as a starting
point for comparing the different interpretations of Schema (1). It is very much
in the same vein as the probability logic proposed in [56].

In §2.1 we introduce probability functions, interval-valued probabilities and
imprecise probabilities. §2.2 shows that the key question facing the standard
semantics is naturally represented as a question of the form of Schema (1). §2.3
shows the converse, namely that a question of the form of Schema (1) can be
naturally interpreted by appealing to the standard semantics.

10



2.1 Background

The standard semantics comprises the traditional logical tenet that inference
rules must be truth-preserving, and the further tenet that for probabilistic logic
the formal models are probability measures and thus comply to the axioms
of Kolmogorov [78]. Neither tenet is common to all the perspectives in this
paper, but it is instructive to note how each account diverges from the standard
semantics.

2.1.1 Kolmogorov Probabilities

The standard probabilistic semantics for a single measure on a propositional
language is provided in terms of a probability structure, which we shall define
shortly. A probability structure is based upon a specified probability space.

Definition 2.1 (Probability Space) A probability space is a tuple (Ω,F , P ),
where Ω is a sample space of elementary events, F is a σ-algebra of subsets of Ω,
and P : F → [0, 1] is a probability measure satisfying the Kolmogorov axioms:

P1. P (E) ≥ 0, for all E ∈ F ;

P2. P (Ω) = 1;

P3. P (E1 ∪ E2 ∪ · · · ) =
∑
i P (Ei), for any countable sequence E1, E2, . . . of

pairwise disjoint events Ei ∈ F .

Note that when Ω is finite and E and F are disjoint members of F , a special
case of P3 is

P3∗. P (E ∪ F ) = P (E) + P (F ),

from which, along with P1, a useful general additivity property may be derived,
namely

P3′. P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).

Definition 2.2 (Probability Structure) A probability structure is a quadru-
ple M = (Ω,F , P, I), where (Ω,F , P ) is a probability space and I is an interpre-
tation function associating each elementary event ω ∈ Ω with a truth assignment
on the propositional variables Φ in a language L such that I(ω,A) ∈ {true, false}
for each ω ∈ Ω and for every A,B,C, . . . ∈ Φ.

Since P is defined on events rather than sentences, we need to link events
within a probability structure M to formulas in Φ. If we associate JϕKM with the
set of elementary events within (finite) Ω inM where ϕ is true, then the following
proposition makes explicit the relationship between formulas and events.

Proposition 2.3 For arbitrary propositional formulas ϕ and ψ,

1. Jϕ ∧ ψKM = JϕKM ∩ Jψ]]M ,

2. Jϕ ∨ ψKM = JϕKM ∪ Jψ]]M ,

3. J¬ϕKM = Ω \ JϕKM .
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Under this interpretation, the assignments of probability to sets in the algebra
are effectively assignments of probability to expressions in L. Hence,

P (ϕ)⇔ P (Jϕ[]M ).

For present purposes we may compress notation by using capital letters to denote
both propositions within a language L and the corresponding events within F
of some structure M , and we may also omit the subscript M when the context
is clear.

Ronald Fagen, Joseph Halpern, and Nimrod Megiddo [33] provide a proof
theory for the standard semantics on a propositional language. Deciding sat-
isfiability is NP-complete. There are obstacles to providing a proof theory for
probability logics on more expressive languages, however. Halpern [59] discusses
a first-order probability logic allowing ϕ to represent probability statements, but
these systems are highly undecidable. Indeed, the validity problem for first-order
probability logic with a single binary predicate is not even decidable relative to
the full theory of real analysis. The reason is that standard Kolmogorov proba-
bility is a higher-order function on sets, so a language that is expressive enough
afford probabilistic reasoning about probability statements will extend beyond
the complexity of first-order reasoning about real numbers and natural numbers.

2.1.2 Interval-Valued Probabilities

One may feel that the above is really all there is to probabilistic logic. That
is, one may think that the axioms of probability theory and the interpretation
of the algebra as a language already provide a complete logic. Bayesian proba-
bilistic logic, as put forward in Ramsey [116] and De Finetti [27], and explicitly
advocated by Howson, [64, 65], Morgan [101], and Halpern [60], is exactly this.
In this logic we interpret the probability assignments as a kind of partial truth
valuation, or as a degree of belief measured by betting quotients. The axioms
may then be taken as the sole consistency constraints on these valuations, and
thus as inference rules in the language. Apart from these constraints we are
allowed to choose the probability assignments over the algebra freely, as long as
they have sharp values.

As brought out clearly in [56], the latter requirement is by no means a
necessity for this type of probabilistic logic. Let us examine some cases in
which logical formulas cannot be assigned sharp probabilities. The first case
occurs within the standard semantics itself. From P3′ we may derive constraints
for events E and F in F even when we do not know the value of P (E ∩ F ).
For example, if P (E) = 0.6 and P (F ) = 0.7, and this is all that is known
about E and F , then we may derive that 0.7 ≤ P (E ∨ F ) ≤ 1, and that
0.3 ≤ P (E∧F ) ≤ 0.6. This constraint is generalized by the following proposition
[141].

Proposition 2.4 If P (E) and P (F ) are defined in M , then:

1. P (E ∩ F ) lies within the interval

[max(0, (P (E) + P (F ))− 1),min(P (E), P (F ))], and

2. P (E ∪ F ) lies within the interval

[max(P (E), P (F )),min(P (E) + P (F ), 1)].
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So, the standard semantics allows for interval-valued conclusions on the basis of
sharp-valued assignments in the premises.

It thus seems that interval-valued probability assignments follow rather nat-
urally from the standard semantics using sharp assignments. We might then ask
how to extend the use of interval-valued assignments to premises. The strategy
for dealing with this case is exactly the same: the premises can still be seen as
restrictions on a set of probability assignments. But there are several tactical
options to consider before specifying how to generalize the way the standard
semantics handles the general question behind Schema (1).

One way of defining such interval-valued probability assignments is by means
of inner and outer measures [57, 139, 60, 141]. Suppose we do not have a sharp
probability value for an event F because F 6∈ F within our probability structure,
but F is logically related to events in F . For instance, suppose we know that
F contains E and that F is contained within G, and that both F and G are
within F . When there is no measurable event contained in F that dominates
E, then E is a kernel event for F . When every measurable event containing F
dominates G, then G is a covering event for F . The measures of F ’s kernel and
cover then yield non-trivial bounds on F with respect to M , since otherwise
P (F ) would be undefined.

We express this idea in terms of inner and outer measures . If measure P is
defined on F of M and E′ is not in F , then P (E′) is not defined since E′ isn’t
in the domain of P . However E′ may be an element of an algebra F ′ such that
F is a subalgebra of F ′. We may then extend the measure P to the set E′ by
defining inner and outer measures to represent our uncertainty with respect to
the precise measure of E′.

Definition 2.5 (Inner and Outer Measure) Let F be a subalgebra of an al-
gebra F ′, P : F → [0, 1] a probability measure defined on the space (Ω,F , P ),
and E an arbitrary set in F ′−F . Then define the inner measure P induced by
P and the outer measure P induced by P as:

P (E) = sup{P (F ) : F ⊆ E,F ∈ F} (inner measure of E);

P (E) = inf{P (F ) : F ⊇ E,F ∈ F} (outer measure of E).

We now observe some properties of inner and outer measures:

P4. P (E ∪ F ) ≥ P (E) + P (F ), when E and F are disjoint (superadditivity);

P5. P (E ∪ F ) ≤ P (E) + P (F ) , when E and F are disjoint (subadditivity);

P6. P (E) = 1− P (E);

P7. P (E) = P (E) = P (E), if E ∈ F .

Properties P4 and P5 follow from P2 and P3. Note that when Ω is finite, P4 and
P5 follow from P2 and P3∗. P6 makes explicit the relationship between inner
and outer measures. By P3, for each set E, there are measurable sets F,G ∈ F
such that F ⊆ E ⊆ G and P (E) = P (F ) and P (E) = P (G). Note then the
limit cases: if there are no measurable sets containing E other than the entire
space Ω, then P = 1; if there are no nonempty measurable sets contained in E,
then P (E) = 0. Thus, P6 allows us to represent the situation in which we are
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entirely ignorant of event E. P7 makes explicit that inner and outer measures
strictly extend P : if an event E is measurable, then the inner (outer) measure
of E is P (E). Thus, P6 represents the case when we have sharp probabilities
for E. Finally by P2 and P3, we may generalize P4 to

P4′. P (E ∪ F ) ≥ P (E) + P (F )− P (E ∩ F ) (generalized superadditivity).

A positive function satisfying P2 and P4′ is called a 2-monotone Choquet ca-
pacity, which may be generalized to an n-monotone Choquet capacity when P4′

is replaced by

P4∗. P (E =
n⋃
i=1

Ei) ≥
n∑
i=1

∑
{F⊆{E1,...,En}:|F |=i}

(−1)i+1P (
⋂
i+1

Ei+1).

P4∗ says that the inner-measure of the union of n events is greater or equal to
the sum of adding all marginal inner measures P (E1)+ · · ·+P (En), subtracting
all pairs of intersections in E, adding all 3-member intersections, and so on,
alternating through to n. The switch between addition of odd intersections and
subtraction of even intersections is handled by the (−1)i+1 term. Note that
Proposition 2.4 records properties for 1-monotone capacities. A 1-monotone
probability logic is studied in [141]. Finally, a Dempster-Shafer belief function
is an ∞-monotone capacity.

2.1.3 Imprecise Probabilities

We now turn to the relationship between inner-measures and sets of probabili-
ties.

Theorem 2.6 (Horn and Tarski, 1948) Suppose P is a measure on a (finitely
additive) probability structure M such that F ⊆ F ′. Define P as the set of all
extensions P ′ of P to F ′. Then for all E ∈ F ′:

(i.) P (E) = P(E) = inf{P ′(E) : P ′ ∈ P}, and

(ii.) P (E) = P(E) = sup{P ′(E) : P ′ ∈ P}.

The Horn-Tarski result links the inner-measure of an event E to the lower
probability P(E) for a particular set of probability measures, namely those which
extend F to events in F ′. However, the lower probability of an arbitrary set of
measures does not necessarily satisfy (P4∗). So, lower probability in general is
not equivalent to the lower envelope of the set P extending F to F ′.

To go from a lower probability to the lower envelope of a set P of distri-
butions, observe that every 2-monotone lower probability is a lower envelope.
Since the set P∗ of measures P∗ that dominates P (i.e., P∗ = {P ∗ : P ∗(E), for
all events E}) is a (possibly empty) closed, convex polyhedron within the space
of possible measures [139], we might think that dominated lower probability is
sufficient to identify the convex hull. But it isn’t. The problem is that P may not
satisfy (P4∗) and one can construct dominated, 1-monotone lower probabilities
that fail to be a lower envelope. Even so, every 2-monotone lower probability is
a lower envelope [139, §3.3.3]. So, if we find the set of probability distributions
that dominate the 2-monotone lower probability of a set P we will have found
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the lower envelope of P. Note that although a set P∗ ( P of dominated mea-
sures is a convex set, the convex hull of P∗ is not necessarily the convex hull
of P. We need the additional monotonicity condition. Before pressing on, first
a short digression on convex sets. For convexity is not only crucial for linking
lower probability to a set of distributions, but the property crucial as well for
the network structures we consider in Part II.

2.1.4 Convexity

Generally, a set X is called convex if and only if X is closed under all binary
operations b(λ,1−λ) for λ ∈ [0, 1]. To understand this notion, picture two points,
x, y, that are members of a real line segment X defined on a linear space Z.
The straight line segment from x to y is the set {λx+(1−λ)y : λ ∈ [0, 1]}. This
equation specifies the convex hull of the set {x, y}, and the endpoints x and y
are its extremal points. A set X ⊆ Z is convex if and only if X contains the
straight line segment connecting each pair of its members.

A credal set K is a convex set of probability functions, i.e. P1, P2 ∈ K implies
λP1 + (1 − λ)P2 ∈ K for all λ ∈ [0.1]. Return now to the relationship between
a convex set of probability functions and lower probability.

Theorem 2.7 (Walley 1991) If K is a convex set of probability functions,
then

(iii.) P (E) = K(E) = inf{P (E) : P ∈ K}; and

(iv.) P (E) = K(E) = sup{P (E) : P ∈ K}.
This correspondence is proved by Walley [139, §3.3.3]. Halpern [60, §2.3]

discusses the relationship between lower probability and Choquet capacities
without assuming convexity, and has offered examples involving chance set-ups
as cases where convexity is not a suitable assumption. All of the frameworks
that we consider in this paper will exploit convex sets of probabilities in one
fashion or another, but care should be exercised establishing the conditions
under which convexity holds. This is particularly important when considering
evidential probability in §4 and statistical reasoning in §5.

Note that by definition, the convexity of a set depends on the coordinates
that determine which lines are taken as straight in a certain space. In the case
of credal sets, the convexity of a set thus depends on the coordinates of the
space of probability assignments. In §8.1.2 we will illustrate this further.

2.2 Representation

It is clear that the key question of what Y to attach to ψ is a question of
the form of Schema (1). For all P defined on the propositional language L, if
P (ϕ1) ∈ X1, . . ., P (ϕn) ∈ Xn entails P (ψ) ∈ Y , then

ϕX1
1 , . . . , ϕXnn |= ψY .

The entailment relation employed in the standard semantics is classical con-
sequence. In terms of our classification of entailment relations, the entailment
under the standard semantics is monotonic and decomposable. The only differ-
ence between the standard probabilistic semantics and the standard semantics

15



for propositional logic is that the models for the probabilistic logic are full
probability assignments over the language rather than truth assignments. An
inference in a framework of probabilistic logic is valid iff the set of all models, i.e.
probability assignments, satisfying the premises is included in the set of models,
i.e. probability assignments, satisfying the conclusion, as depicted in Figure 1.

ϕX1
1 , . . . , ϕXn

n

ψY

P

Figure 1: Validity in the standard semantics comes down to the inclusion of the set of
probability functions satisfying the premises, ϕX1

1 , . . . , ϕXnn , in the set of assignments
satusfying the conclusion, ψY . The rectangular space of probability assignments P
includes all probability assignments over the language L.

Normally premises are of the form aX , presenting a direct restriction of the
probability for a to X, that is, P (a) ∈ X ⊂ [0, 1], where X might also be a sharp
probability value P (a) = x. In a few cases, however, the restrictions imposed
by the premises can take alternative forms. An example is the premise (a|b)x,
meaning that P (a|b) = x. Such premises cannot be interpreted directly as
the measures of specific sets in the associated semantics. Instead they present
restrictions to the ratio of the measures of two sets. By definition we have
P (a|b) = P (a ∧ b)/P (b), so we may say that (a|b)x is a shorthand form of two
normal premises which together entail the restriction, namely

(a|b)x ⇔ ∀y ∈ (0, 1] : by, axy. (2)

Restrictions to the probability assignment P that can be spelled out in terms
of combinations of inter-related normal premises ax we will call composite. In
principle, the standard semantics allows for any premise that can be understood
as a composite restriction. See §3 and §6 for examples.

Some special attention must be devoted to premises to do with indepen-
dence relations between propositional variables. Examples are A ⊥⊥ B, meaning
that P (A,B) = P (A)P (B), or A ⊥⊥ B|C, which means that P (A,B|C) =
P (A|C)P (B|C). These more complex probabilistic relations can also be incor-
porated into the premises, for example by

∃x, y ∈ [0, 1] : ax, by, (a ∧ b)xy, (a ∧ b̄)x(1−y), (ā ∧ b)(1−x)y (3)

for P (A,B) = P (A)P (B). Equation (3) can be combined with Equation (2)
to provide the probabilistic restriction associated with A ⊥⊥ B|C. Examples of
such premises can be found in §8 and §13.
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2.3 Interpretation

We may also use the standard probabilistic semantics to provide an interpreta-
tion of

ϕX1
1 , . . . , ϕXnn |≈ ψY .

In this interpretation, the premises provide constraints on a probability assign-
ment, and the conclusion is a constraint that is guaranteed to hold if all the
constraints of the premises hold. Clearly ϕX1

1 , . . . , ϕXnn |≈ ψ[0,1], so the problem
isn’t to find some Y that ϕX1

1 , . . . , ϕXnn |≈ ψY but to find the smallest such Y .
Since any superset of this minimal Y can also be attached to the conclusion
sentence ψ, if one finds the minimal Y then one determines all Y for which the
entailment relation holds.

From our observations, the standard semantics answers the fundamental
question posed by Schema (1) by finding the lower and upper envelope of the
convex set K of probability functions which satisfy all premises on the left-
hand side of Schema (1). So the standard semantics deals with interval-valued
assignments to premises in exactly the way we should expect. This is illustrated
in the following two examples.

Example 2.8 If we have ϕ0.2
1 and ϕ

[0.3,0.4]
2 (without further specifying ϕ1 and

ϕ2), then the models include all probability measures P for which P (ϕ1) = 0.2
and 0.3 ≤ P (ϕ2) ≤ 0.4. Now imagine that we ask (ϕ1 ∨ ϕ2)?. What minimal
interval Y can we attach to ϕ1 ∨ ϕ2 in that case? According to the standard
semantics this is determined entirely by the consistency constraints imposed by
the axioms. For the function that has P (ϕ1) = 0.2 and P (ϕ2) = 0.3 we can
derive 0.3 ≤ P (ϕ1 ∨ ϕ2) ≤ 0.5, and for the function that has P (ϕ2) = 0.4 we
can derive 0.4 ≤ P (ϕ1 ∨ ϕ2) ≤ 0.6. From these extreme cases we can conclude
that 0.3 ≤ P (ϕ1 ∨ ϕ2) ≤ 0.6, so that Y = [0.3, 0.6].

P (a ∧ ¬b) = 1 P (¬a ∧ b) = 1

P (a ∧ b) = 1

0.25

K2

P (a) = 1
P (b) = 0.25

P (a) = 0.25
P (b) = 0.25

K1
∩K2

P (a) = 1
P (b) = 0

P (a) = 0
P (b) = 0

K1

Figure 2: The set of all possible probability measures P , depicted as a tetrahedron,
together with the credal sets obtained from the given probabilistic constraints.

Example 2.9 Consider two premises (a∧b)[0,0.25] and (a∨¬b)1. For the speci-
fication of a probability measure with respect to the corresponding 2-dimensional
space {0, 1}2, at least three parameters are needed (the size of the sample space
minus 1). This means that the set of all possible probability measures P can be
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nicely depicted by a tetrahedron (3-simplex) with maximal probabilities for the
state descriptions a∧b, a∧¬b, ¬a∧b, and ¬a∧¬b at each of its four extremities.
This tetrahedron is depicted in Fig. 2, together with the convex sets K1 and K2

obtained from the constraints P (a∧b) ∈ [0, 0.25] and P (a∨¬b) = 1, respectively.
From the (convex) intersection K1 ∩K2, which includes all probability functions
that satisfy both constraints, we see that Y = [0, 1] attaches to the conclusion a,
whereas Y = [0, 0.25] attaches to the conclusion b.

3 Probabilistic Argumentation

Degrees of support and possibility are the central formal concepts in the theory
of probabilistic argumentation [48, 51, 53, 75]. This theory is driven by the gen-
eral idea of putting forward the pros and cons of a proposition or hypothesis in
question. The weights of the resulting logical arguments and counter-arguments
are measured by probabilities, which are then turned into (sub-additive7) de-
grees of support and (super-additive) degrees of possibility. Intuitively, degrees
of support measure probabilistically the presence of evidence which supports
the hypothesis, whereas degrees of possibility measure the absence of evidence
which refutes the hypothesis. For this, probabilistic argumentation is concerned
with probabilities of a particular type of event of the form ‘the hypothesis is
a logical consequence of the evidence’ rather than ‘the hypothesis is true’, i.e.
very much like Ruspini’s epistemic probabilities [121, 122]. Apart from that,
they are classical (additive7) probabilities in the sense of Kolmogorov’s axioms.

Probabilistic argumentation as a computational process of formal reasoning
has two major components. While the qualitative component deals with the
generation of logical arguments and counter-arguments, it is up to the quantita-
tive component to turn the qualitative results into numerical degrees of support
and possibility. In the following, the focus will be placed on the quantitative
component and the numerical results thereof.

3.1 Background

Probabilistic argumentation requires the available evidence to be encoded by a
finite set Φ = {ϕ1, . . . , ϕn} ⊂ LV of sentences in a logical language LV over a
set of variables V and a fully specified probability measure P : 2ΩW → [0, 1],
where ΩW denotes the finite sample space generated by a subset W ⊆ V of
so-called probabilistic variables.8 These are the theory’s basic ingredients. The
logical language LV itself is supposed to possess a well-defined model-theoretic
semantics, in which a monotonic (and decomposable) entailment relation |= is
defined in terms of set inclusion of models in some underlying universe ΩV .
Otherwise, there are no further assumptions or restrictions regarding the logical

7Degrees of support are additive probabilities with respect to the events that a given hy-
pothesis is a logical consequence of the available evidence or not. However, by considering
evidence and hypotheses which outrange the domain of the given probability space, they be-
come sub-additive with respect to the hypothesis and its negation. This simple but remarkable
effect is one of theory’s key components.

8The finiteness assumption with regards to ΩW is not a conceptual restriction of the
theory, but it allows us here to define P with respect to the σ-algebra 2ΩW and thus helps to
keep the mathematics simple.
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ΩW

ΩV \W

Args(ψ)

!Φ"!ψ"
Args(¬ψ)

︷︸︸︷
︷︸︸︷

Figure 3: The sample space ΩW is shown as the vertical sub-space of the complete
space ΩV = ΩW × ΩV \W , which means that the sets of arguments Args(ψ) is the
horizontal projection of the area of JΦK that lies entirely inside JψK, whereas the set of
counter-arguments Args(¬ψ) is the horizontal projection of the area of JΦK that lies
entirely outside JψK.

language or the specification of the probability measure P (for the latter we
may for example use a Bayesian network).

Definition 3.1 (Probabilistic Argumentation System) A probabilistic ar-
gumentation system is a quintuple

A = (V,LV ,Φ,W, P ), (4)

where V , LV , Φ, W , and P are as defined above [51].

For a given probabilistic argumentation system A, let another logical sen-
tence ψ ∈ LV represent the hypothesis in question. For the formal definition of
degrees of support and possibility, consider the subset of ΩW whose elements,
if assumed to be true, are each sufficient to make ψ a logical consequence of Φ.
Formally, this set of so-called arguments of ψ is defined by

ArgsA(ψ) = {ω ∈ ΩW : Φ|ω |= ψ}, (5)

where Φ|ω denotes the set of sentences obtained from Φ by instantiating all
the variables from W according to the partial truth assignment ω ∈ ΩW [51].
The elements of ArgsA(¬ψ) are sometimes called counter-arguments of ψ, see
Figure 3 for an illustration. Note that the elements of ArgsA(⊥) = ArgsA(ψ) ∩
ArgsA(¬ψ) are the ones that are inconsistent with the available evidence Φ,
which is why they are called conflicts. The complement of the set of conflicts,

EA = ΩW \ArgsA(⊥) = {ω ∈ ΩW : Φ|ω 6|= ⊥}, (6)

can thus be interpreted as the available evidence in the sample space ΩW induced
by Φ. We will thus use EA in its typical role to condition P . In the following,
when no confusion is anticipated, we omit the reference to A and write E as a
short form of EA and Args(ψ) as a short form of ArgsA(ψ).

Definition 3.2 (Degree of Support) The degree of support of ψ, denoted by
dspA(ψ) or simply by dsp(ψ), is the conditional probability of the event Args(ψ)
given the evidence E,

dsp(ψ) = P (Args(ψ)|E) =
P (Args(ψ))− P (Args(⊥))

1− P (Args(⊥))
. (7)
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Definition 3.3 (Degree of Possibility) The degree of possibility of ψ, de-
noted dpsA(ψ) or simply by dps(ψ), is defined by

dps(ψ) = 1− dsp(¬ψ) =
1− P (Args(¬ψ))
1− P (Args(⊥))

. (8)

Note that these formal definitions imply dsp(ψ) ≤ dps(ψ) for all hypotheses
ψ ∈ LV , but this inequality turns into an equality dsp(ψ) = dps(ψ) for all
ψ ∈ LW . Another important property of degree of support is its consistency
with pure logical and pure probabilistic inference. By looking at the extreme
cases of W = ∅ and W = V , it turns out that degrees of support naturally
degenerate into classical logical entailment Φ |= ψ and into ordinary posterior
probabilities P (ψ|Φ), respectively. This underlines the theory’s claim to be a
unified formal theory of logical and probabilistic reasoning [48].

From a computational point of view, we can derive from Φ and ψ logical
representations of the sets Args(ψ), Args(¬ψ), and Args(⊥) through quantifier
elimination [145]. For example, if the variables to be eliminated, U = V \W , are
all propositional variables, and if Φ is a clausal set, then it is possible to realize
quantifier elimination as a resolution-based variable elimination procedure [53].

Example 3.4 Consider a set V = {A1, A2, A3, A4, X, Y, Z} of propositional
variables with W = {A1, A2, A3, A4} and therefore U = {X,Y, Z}. Further-
more, let Φ = {a1∧a2→x, a3→y, x∨y→ z, a4→¬z} be the encoded evidence
and ψ = z the hypothesis in question. By eliminating the variables U from
Φ∪{¬z} and Φ∪{z} (using classical resolution-based variable elimination), we
obtain

Args(z) = J(¬a1∨¬a2) ∧ ¬a3Kc = J(a1∧a2) ∨ a3K,
Args(¬z) = J¬a4Kc = Ja4K,

respectively, which implies

Args(⊥) = Args(z) ∩Args(¬z) = J((a1∧a2) ∨ a3) ∧ a4K.
If we suppose that the variables in W are probabilistically independent with re-
spective marginal probabilities P (a1) = 0.7, P (a2) = 0.2, P (a3) = 0.5, and
P (a4) = 0.1, we can use the induced probability measure P to obtain

P (Args(z)) = 0.57, P (Args(¬z)) = 0.1, P (Args(⊥)) = 0.057,

from which we derive dsp(z) = 0.57−0.07
1−0.057 = 0.544 and dps(z) = 1−0.1

1−0.057 = 0.954.
These results indicate the presence of some non-negligible arguments for z and
the almost perfect absence of corresponding counter-arguments. In other words,
there are some good reasons to accept, but almost no reason to reject z.

When it comes to quantitatively judging the truth of a hypothesis ψ, it
is possible to interpret degrees of support and possibility as respective lower
and upper bounds of a corresponding credal set. The fact that such bounds
are obtained without effectively dealing with probability sets or probability in-
tervals distinguishes the theory from most other approaches to probabilistic
logic. Another important interpretation of degrees of support and possibility
arises from seeing them as the coordinates b = dsp(ψ), d = 1 − dps(ψ), and
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i = dps(ψ) − dsp(ψ) of an opinion ωψ = (b, d, i) in the standard 2-simplex
{(b, d, i) ∈ [0, 1]3 : b+ d+ i = 1} called an opinion triangle [51, 72].

Last but not least, it should be mentioned that there is a strict mathemati-
cal analogy between degrees of support/possibility and belief/plausibility in the
Dempster-Shafer theory of evidence [29, 128]. This connection has been thor-
oughly discussed in [54], according to which any probabilistic argumentation
system is expressible as a belief function. On the other hand, it is possible to
express belief functions as respective probabilistic argumentation systems and
to formulate Dempster’s combination rule as a particular form of merging two
probabilistic argumentation systems. Despite these technical similarities, the
theories are still quite different from a conceptual point of view. A good exam-
ple is Dempster’s rule of combination, which is a central conceptual element in
the Dempster-Shafer theory, but which is of almost no relevance in the theory
of probabilistic argumentation. Another difference is the fact that the notions
of belief and plausibility in the Dempster-Shafer theory are often entirely de-
tached from a probabilistic interpretation (for example in Smets’ Transferable
Belief Model [131]), whereas degrees of support and possibility are probabilities
by definition. Finally, while using a logical language to express factual infor-
mation is an intrinsic part of a probabilistic argumentation system, it is almost
nonexistent in the Dempster-Shafer theory.

3.2 Representation

To connect probabilistic argumentation with probabilistic logic, let us first
discuss a possible way of representing a probabilistic argumentation system
A = (V,LV ,Φ,W, P ) in form of the general framework of §1.1, where the avail-
able evidence is encoded in the form of Schema (1), i.e. as a set of sentences
ϕXii with attached probabilistic weights Xi ⊆ [0, 1].

The most obvious part of such an encoding are the sentences ϕi ∈ Φ,
which are all hard constraints with respect to the possible true state of ΩV .
To translate such model-theoretic constraints into corresponding probabilistic
constraints, we simply attach the sharp value 1.0, or more strictly spoken the sin-
gleton set Xi = {1.0}, to each sentence ϕi. We will therefore have ϕ1.0

1 , . . . , ϕ1.0
n

as part of the left hand side of Schema (1), where 1.0 is a short form for the
singleton set {1.0}.

The second part of the information contained in a probabilistic argumen-
tation system is the probability measure P : 2ΩW → [0, 1]. The simplest and
most general encoding in the form of Schema (1) consists in enumerating all ele-
mentary outcomes ω ∈ ΩW together with their respective probabilities P ({ω}).
For this, let αω = [A1= e1] ∧ · · · ∧ [Ar= er] denote a conjunction, which as-
signs according to ω = (ae11 , . . . , a

er
r ) a value ei to each of the r variables

A1, . . . , Ar ∈ W . This leads to JαωK = {ω} and thus allows us to use the
sentence αω as a logical representative of ω. In the finite case, which means
that the elements of ΩW = {ω1, . . . , ωm} are indexable, say from 1 to m, we
finally obtain

ϕ1.0
1 , . . . , ϕ1.0

n , αx1
ω1
, . . . , αxmωm , with xi = P ({ωi}),

for a complete (but obviously not very compact) encoding of the probabilistic
argumentation system in form of the left hand side of Schema (1). Note that all
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attached probabilities are sharp values, but depending of the chosen interpreta-
tion, this does not necessarily mean that the target set Y for a given conclusion
ψ is also a sharp value (e.g., the standard semantics from §2 does not generally
produce sharp values in such cases).

In case the probability measure P is specified in terms of marginal or con-
ditional probabilities together with respective independence assumptions, for
example by means of a Bayesian network, we would certainly not want to enu-
merate all atomic states individually. Instead we would rather try to express
the given (conditional or marginal) probability values and independence assump-
tions directly by statements of the form of Schema (1). We have already seen
in §2.2 how to represent conditional independence relations such as A ⊥⊥ B|C
in form of Schema (1), so we do not need to repeat the details of this tech-
nique at this point. In the particular case where all probabilistic variables are
pairwise independent, we would have to add the constraints Ai ⊥⊥ Aj for all
pairs of probabilistic variables Ai, Aj ∈ W , Ai 6= Aj , together with respective
constraints for their marginal probabilities P (Ai).

3.3 Interpretation

Now let us move our attention to the question of interpreting instances of
Schema (1) as respective probabilistic argumentation systems. For this, we will
first generalize in four different ways the idea of the standard semantics as ex-
posed in §2 to degrees of support and possibility. And then we will explore three
different perspectives obtained by considering each attached probability set as
an indicator of the premise’s reliability. In all cases we will end up with lower
and upper bounds for the target set Y on the right hand side of Schema (1).
See [55] for a related discussion.

3.3.1 Generalizing the Standard Semantics

As in the standard semantics, let the attached probability sets be interpreted as
constraints on the possible probability measure P . We will see below that this
can be done in various ways, but what these ways have in common is that the
main components of the involved probabilistic argumentation system need to be
fixed to get started. For this, let us first split up the set of premises into the ones
with an attached probability of 1.0 and the ones with an attached probability
or probability set different from 1.0. By taking the former for granted, the idea
is to let them play the role of the available evidence Φ.

This decomposition of the set of premises is the common starting point of
what follows, but to simplify the subsequent discussion and to make it most
consistent with the rest of the paper, let us simply assume Φ to be given in
addition to some premises ϕX1

1 , . . . , ϕXnn in the form of Schema (1). If we then
fix W to be the set of variables appearing in ϕ1, . . . , ϕn, we can apply the
standard semantics to obtain the set

P = {P : P (ϕi) ∈ Xi, ∀i = 1, . . . , n}
of all admissible probability measures w.r.t. to the sample space ΩW . The re-
sult is what could be called an imprecise probabilistic argumentation system
A = (V,LV ,Φ,W,P). Or we may look at each probability measure from P
individually and consider the family A = {(V,LV ,Φ,W, P ) : P ∈ P} of all

22



such probabilistic argumentation systems, each of which with its own degree of
support (and degree of possibility) function. Note that by applying this pro-
cedure to the proposed representation of the previous subsection, we return to
the original probabilistic argumentation system (then both P and A degenerate
into singletons).

Instead of using the sets Xi as constraints directly for P , we may also in-
terpret them as respective constraints for corresponding degrees of support or
possibility. This leads to the following three variations of the above scheme.

Constraints on Degrees of Support. If we consider each set Xi to be a
constraint for the degree of support of ϕi, we obtain a set admissible probability
measures that is quite different from the one above:

P = {P : dspA(ϕi) ∈ Xi, ∀i = 1, . . . , n, A = (V,LV ,Φ,W, P )}.
As before, this delivers a whole family A = {(V,LV ,Φ,W, P ) : P ∈ P} of
possible probabilistic argumentation systems.

Constraints on Degrees of Possibility. In a similar way, we may consider
each sets Xi to be a constraint for the degree of possibility of ϕi. The resulting
set of admissible probability measures,

P = {P : dpsA(ϕi) ∈ Xi, ∀i = 1, . . . , n, A = (V,LV ,Φ,W, P )},
is again quite different from the ones above. Note that we may ‘simulate’
this semantics by applying the previous semantics to the negated premises
¬ϕZ1

1 , . . . ,¬ϕZnn , where Zi = {1 − x : x ∈ Xi} denotes the corresponding
‘negated’ sets of probabilities, and the same works in the other direction. This
remarkable relationship is a simple consequence of the duality between degrees
of support and possibility.

Combined Constraints. To obtain a more symmetrical semantics, in which
degrees of support and degrees of possibility are equally important, we consider
the restricted case where each set Xi = [`i, ui] is an interval. We may then
interpret the lower bound `i as a sharp constraint for the degree of support and
the upper bound ui as a sharp constraint for the degree of possibility of ϕi. This
defines another set of admissible probability measures,

P = {P : dspA(ϕi) = `i, dpsA(ϕi) = ui, ∀i = 1, . . . , n, A = (V,LV ,Φ,W, P )},
which is again quite different from the previous ones. Note that we can use
the relationship dps(ψ) = 1− dsp(¬ψ) to turn the constraints dsp(ψi) = `i and
dps(ψi) = ui into two constraints for respective degrees of support or into two
constraints for respective degrees of possibility, whatever is more desirable.

To use any of those interpretations to produce an answer to our main ques-
tion regarding the extent of the set Y for a conclusion ψ, there are again different
ways to proceed, depending on whether degrees of support or degrees of possi-
bility are of principal interest.

1. The first option is to consider the target set Ydsp = {dspA(ψ) : A ∈ A},
which consists of all possible degrees of support w.r.t A.
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2. As a second option, we may do the same with degrees of possibility, from
which we get another possible target set Ydps = {dpsA(ψ) : A ∈ A}.

3. Finally, we may want to look at the minimal degree of support, dsp(ψ) =
min{dspA(ψ) : A ∈ A}, as well as the maximal degree of possibility,
dps(ψ) = max{dpsA(ψ) : A ∈ A}, and use them as respective lower and
upper bounds for the target interval Ydsp/dps = [dsp(ψ), dps(ψ)]. By doing
so, we depart from the general idea of the standard semantics that the
target interval is a set of probabilities satisfying the given constraints.
However, we may still consider it a useful interpretation for instances of
Schema (1).

Notice that in the special case of Φ = ∅, which implies W = V , all three options
coincide with the standard semantics from §2.

3.3.2 Premises from Unreliable Sources

Some very simple, but quite different semantics arise when Xi is used to express
the evidential uncertainty of the premise ϕi in the sense that ϕi belongs to
Φ with probability xi ∈ Xi. Such situations may appear from collecting the
premises from various unreliable sources. Formally, we could express this idea
by P (ϕi ∈ Φ) ∈ Xi and thus interpret Φ as an ‘imprecise fuzzy set’ whose
membership function is only partially determined by the attached probability
set.

This way of looking at questions in the form of Schema (1) again allows var-
ious concrete interpretations. Three options will be discussed in the remaining
of this subsection. In each case, we will end up with sharp degrees of support
and possibility, which will be used as respective lower and upper bounds for
the target interval Y . Note that this is again quite different from the general
idea of the standard semantics, where the target interval is a set of probabilities
satisfying the given constraints, whereas here the interval itself is not a quantity,
only the bounds are quantities. Apart from that, we may still consider them as
useful interpretations for instances of Schema (1).

Incompetent Sources. Suppose that each of the available premises has a
sharp probability Xi = {xi} attached to it. To make this setting compatible
with a probabilistic argumentation system, let us first redirect each attached
probability xi to an auxiliary propositional variable RELi. The intuitive idea
of this is to consider each premise ϕi as a piece of evidence from a possibly
unreliable source Si. The reliability of Si is thus modeled by the proposition
reli (which abbreviates RELi = true), and with P (reli) = xi we measure its
degree of reliability. The subsequent discussion will be restricted to the case
of independent9 sources, which allows us to multiply the marginal probabilities
P (RELi) to obtain a fully specified probability measure P over all auxiliary
variables.

On the purely logical side, we should expect that any statement from a
reliable source is indeed true. This allows us to write reli → ϕi to connect the

9This assumption may appear to be overly idealized, but there are many practical situa-
tions in which this is approximately correct [49, 52]. Relaxing the independence assumption
would certainly allow us to cover a broader class of problems, but it would also make the
analysis more complicated.
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auxiliary variable RELi with ϕi. With

Φ+ = {rel1 → ϕ1, . . . , reln → ϕn}
we denote the set of all such material implications, from which we obtain a
probabilistic argumentation system A+ = (V ∪W,LV ∪W ,Φ+,W, P ) with W =
{REL1, . . . ,RELn} and P as defined above. This allows us then to compute the
degrees of support and possibility for the conclusion ψ and to use them as lower
and upper bounds for the target interval Y .

In the proposed setting, only the positive case of a reliable source is mod-
eled, but nothing is said about the behaviour of an unreliable source. For this,
it is possible to distinguish between incompetent and dishonest (but competent)
sources. In the case of an incompetent source, from which no meaningful evi-
dence should be expected, we may model the negative behaviour by auxiliary
implications of the form ¬reli → >. Note that these implications are all ir-
relevant tautologies, i.e. we get back to the same set Φ+ from above. In this
semantics, the values P (reli) = xi should therefore be interpreted as degrees of
competence rather than general degrees of reliability.

Example 3.5 Let V = {X,Y, Z} be a set of propositional variables and

x0.7, x→y0.9, ¬y↔ z0.3 |≈ zY

the given problem in the form of Schema (1). Using the necessary auxiliary vari-
ables W = {REL1,REL2,REL3} with respective marginal probabilities P (rel1) =
0.7, P (rel2) = 0.9, and P (rel3) = 0.3, we obtain the set

Φ+ = {rel1→x, rel2→ (x→y), rel3→ (¬y↔ z)},
and a corresponding probabilistic argumentation system A+. For the hypothesis
z, this leads to the dspA+(z) = 0 and dpsA+(z) = 0.811 and thus to Y = [0, 0.811]
for the resulting target interval Y of Schema (1).

Dishonest Sources. As before, we suppose that all attached probabilities are
sharp values xi, but now we consider the possibility of the sources being mali-
cious, i.e. competent but not necessarily honest. In this case, the interpretation
of P (reli) = xi becomes the one of a degree of honesty of source Si. Dishonest
sources are different from incompetent sources in their attitude of deliberately
stating the opposite of the truth. From a logical point of view, ¬reli allows
us thus to infer ¬ϕi, which we may express by additional material implications
¬reli → ¬ϕi. This leads to an extended set of premises,

Φ± = Φ+ ∪ {¬rel1 → ¬ϕ1, . . . ,¬reln → ¬ϕn} ≡ {rel1 ↔ ϕ1, . . . , reln ↔ ϕn},
and a new probabilistic argumentation system A± = (V ∪W,LV ∪W ,Φ±,W, P ).
Note that the difference between the two interpretations may have a huge impact
on the resulting degrees of support and possibility of ψ, and therefore produce
quite different target sets Y , as demonstrated in the following example.

Example 3.6 Consider the setting from Example 3.5, from which we get an
extended set of premises,

Φ± = {rel1↔x, rel2↔ (x→y), rel3↔ (¬y↔ z)},
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and a new probabilistic argumentation system A± = (V ∪W,LV ∪W ,Φ±,W, P ).
This leads then to dspA±(z) = 0.476 and dpsA±(z) = 0.755, and finally we
obtain Y = [0.476, 0.755] for the resulting target interval.

Incompetent and Dishonest Sources. In the more general case, where
each Xi = [`i, ui] is an interval, we will now consider a refined model of the
above-mentioned idea of splitting up reliability into competence and honesty.
Let Xi still refer to the reliability of the source, but consider now two auxiliary
variables COMP i (for competence) and HON i (for honesty). This allows us
to distinguish three exclusive and exhaustive cases, namely compi ∧ honi (the
source is reliable), compi ∧ ¬honi (the source is malicious), and ¬compi (the
source is incompetent). As before, we assume that ϕi holds if Si is reliable, but
also that ¬ϕi holds if Si is malicious. Statements from incompetent sources will
again be neglected. Logically, the general behaviour of such a source can thus be
modeled by two sentences compi ∧ honi → ϕ and compi ∧ ¬honi → ¬ϕi, which
can be merged into compi → (honi ↔ ϕi). This leads to the set of premises

Φ∗ = {comp1 → (hon1 ↔ ϕ1), . . . , compn → (honn ↔ ϕn)}.

To turn this model into a probabilistic argumentation system, we need to link
the auxiliary variables W = {COMP1, . . . ,COMPn,HON 1, . . . ,HON n} to cor-
responding probabilities. For this, we assume independence between COMP i

and HON i, which is often quite reasonable. If we assume the least restrictive
interval Xi = [0, 1] to represent a totally incompetent source, and similarly the
most restrictive interval Xi = [xi, xi] to represent a totally competent source,
then ui − `i surely represents the source’s degree of incompetence, from which
we obtain

P (compi) = 1− (ui − `i) = 1− ui + `i

for the marginal probability of compi. Following a similar line of reasoning, we
first obtain P (compi ∧ honi) = `i for the combined event compi ∧ honi of a
reliable source, which then leads to

P (honi) =
`i

P (compi)
=

`i
1− ui + li

for the marginal probability of honi. As before, we can use the independence
assumption to multiply these values to obtain a fully specified probability mea-
sure P over all auxiliary variables. With A∗ = (V ∪W,LV ∪W ,Φ∗,W, P ) we
denote the resulting probabilistic argumentation system, from which we obtain
degrees of support and possibility for ψ, the bounds for the target interval Y .
Note that A+ and A± from the previous two semantics are special cases of A∗,
namely for ui = 1 (honi becomes irrelevant, and reli undertakes the role of
compi) and `i = ui (compi becomes irrelevant, and reli undertakes the role of
honi), respectively.

Example 3.7 Consider the following adapted version of the problem in Exam-
ple 3.6, in which the original sharp values are replaced by intervals:

x[0.6,0.8], x→y[0.9,1], ¬y↔ z[0.1,0.5] |≈ zY .
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For W = {COMP1,COMP2,COMP3,HON 1,HON 2,HON 3}, this implies the
following marginal probabilities:

P (comp1) = 0.8, P (comp2) = 0.9, P (comp3) = 0.6
P (hon1) = 0.75, P (hon2) = 1, P (hon3) = 0.2.

Together with the proposed encoding and the resulting set of sentences,

Φ∗ = {comp1→ (hon1↔x), comp2→ (hon2↔ (x→y)),
comp3→ (hon3↔ (¬y↔ z))},

we finally obtain dspA∗(z) = 0.216 and dpsA∗(z) = 0.946, which implies the
target interval Y = [0.216, 0.946].

4 Evidential Probability

There are two ideas that drive evidential probability (EP) [81, 88]: probabil-
ity assessments should be based upon relative frequencies, to the extent that
we know them, and the assignment of probability to specific events should be
determined by everything that is known about that event.

Evidential probability is conditional in the sense that the probability of a
sentence χ is relative to a set of sentences Γδ, which represent evidence or
background knowledge. The evidential probability of χ given Γδ is an interval,
in view of our limited knowledge of relative frequencies. However, the evidential
probability of χ given Γδ, Prob(χ,Γδ), is not a ratio but rather a 2-place meta-
linguistic operator on a sentence and a set of sentences of a guarded fragment
of first-order logic.

EP draws a sharp distinction between the set Γδ of evidential certainties
and the set Γε of practical certainties, which are the inductive consequences of
Γδ. An inductively derived sentence is no more certain than the evidence upon
which it is based, and the subscripts δ and ε denote small real numbers. We
accept a sentence ϕ into Γδ as evidence if the frequency of error for ϕ is less
than δ, and we accept χ as a deductive or statistical consequence of Γδ and
include χ in Γε if the risk of error is less than ε. We discuss acceptance further
at the end of §4.1.1 and in §4.3.3.

4.1 Background

To effect statistical inference in EP, statistical statements are viewed as expres-
sions of direct inference of the form

%~x(τ(~x), ρ(~x), [l, u]),

which expresses that given a sequence of propositional variables ~x that satisfies
the (possibly logically complex) reference class predicate(s) ρ, the proportion
of that class which also satisfies the target class predicate(s) τ is between l
and u.10 The language Lep of evidential probability is a guarded first-order
language that also includes direct inference statements, which have particular

10Hereafter we relax notation and simply write ‘x’ for ‘~x’.
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formation rules to block spurious inference.11 The following example illustrates
how EP represents a simple ball-draw experiment and anticipates the inferential
behavior of the theory.

Example 4.1 Suppose the proportion of white balls (W ) in an urn (U) is known
to be within [l, u], and that ball t is drawn from U . Then the following two
sentences are in Γδ:

p%x(W (x), U(x), [l, u])q, U(t).

If this is all we know about t, then Prob(W (t),Γδ) = [l, u]. When there is precise
knowledge that n of the N balls in U are white, Prob(W (t),Γδ) = [ nN ,

n
N ]. When

there is conflicting statistical knowledge about the composition of U , EP applies
rules (see §4.1.1) to resolve the conflict and assigns a unique probability interval
to W (t). When there is no statistical knowledge about the composition of U ,
Prob(W (t),Γδ) = [0, 1].

In Example 4.1 the predicate ‘U ’ denotes the reference class from which t
is randomly drawn. The evidential claim about t is this: since t is a random
member of the population of balls in U , and [l, u] is a known bound on the
proportion of white balls in U and this is the only bound we know to apply to
t, then the probability of t being white is between l and u.

4.1.1 Calculating Evidential Probability

In practice an individual may belong to several reference classes with known
statistics. Selecting the appropriate statistical distribution among the class of
potential probability statements is the problem of the reference class. The task
of assigning evidential probability to a statement χ relative to a set of evidential
certainties relies upon a procedure for eliminating excess candidates from the
set of potential candidates. This procedure is described in terms of the following
definitions.

Definition 4.2 (Potential Probability Statement) A potential probability
statement for χ with respect to Γδ is a tuple 〈t, τ(t), ρ(t), [l, u]〉, such that in-
stances of pχ↔ τ(t)q, pρ(t)q, and p%x(τ(x), ρ(x), [l, u])q are each in Γδ.

Given χ, there are possibly many target statements of form pτ(t)q in Γδ that
have the same truth value as χ. If it is known that individual t satisfies ρ,
and known that between .7 and .8 of ρ’s are also τ ’s, then 〈t,W (t), U(t), [.7, .8]〉
represents a potential probability statement for χ based on the knowledge base

11Syntactically, ‘%’ is a 3-place binding operator, ranging over a finite domain, that con-
nects open formulas of a sorted first-order language, which occur in the first two positions,
to a sub-interval of [0,1] in the last position. The first argument position, marked by τ(x),
denotes a target formula, whereas ρ(x) denotes a reference formula. The object language for
evidential probability is guarded and defined over a sorted domain, so p%x(τ(x), ρ(x), [l, u])q

is well-formed only if τ(x) is constructed from a specified set of target predicates and ρ(x)
is constructed from a specified set of reference predicates. Corner quotes are used around
this direct inference statement since l and u here are not in the object language but instead
are meta-linguistic variables denoting real numbers. Statements of this form can be given
interpretations that cover several standard forms of statistical inference. See §4.1.2 and [88]
for further discussion.
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Γδ. Our focus will be on the statistical statements p%x(τ(x), ρ(x), [l, u])q in Γδ
that are the basis for each potential probability statement.

Selecting the appropriate probability interval for χ from the set of potential
probability statements reduces to identifying and resolving conflicts among the
statistical statements that are the basis for each potential probability statement.

Definition 4.3 (Conflict) Two intervals [l, u] and [l′, u′] conflict iff neither
[l, u] ⊂ [l′, u′] nor [l, u] ⊃ [l′, u′]. Two statistical statements p%x(τ(x), ρ(x), [l, u])q

and p%x(τ∗(x), ρ∗(x), [l′, u′])q conflict iff their intervals conflict.

Note that conflicting intervals may be disjoint or intersect, unless one interval
is contained in the other. For technical reasons an interval is said to conflict
with itself.

Definition 4.4 (Cover) Let X be a set of intervals. An interval [l, u] covers
X iff for every [l′, u′] ∈ X, l ≤ l′ and u′ ≤ u. A cover [l, u] of X is the smallest
cover, Cov(X), iff for all covers [l∗, u∗] of X, l∗ ≤ l and u ≤ u∗.
Definition 4.5 (Difference Set) (i) Let X be a non-empty set of intervals
and P(X) be the powerset of X. A non-empty Y ∈ P(X) is a difference set of
X iff Y includes every x ∈ X that conflicts with some y ∈ Y .

(ii) Let X be the set of intervals associated with a set Γ of statistical state-
ments, and Y be the set of intervals associated with a set Λ of statistical state-
ments. Λ is a difference set to Γ iff Y is closed under difference with respect to
X.

It is not necessary that all intervals in a difference set X be pairwise con-
flicting intervals. Difference sets identify the set of all possible conflicts for each
potential probability statement in order to find that conflicting set with the
shortest cover.

Definition 4.6 (Minimal Cover Under Difference) (i) Let X be a non-
empty set of intervals and Y = {Y1, . . . , Yn} the set of all difference sets of X.
The minimal cover under difference of X is the smallest cover of the elements
of Y, i.e., the shortest cover in {Cov(Y1), . . . , Cov(Yn)}.

(ii) Let X be the set of intervals associated with a set Γ of statistical state-
ments, and Y be the set of all difference sets of X associated with a set Λ
of statistical statements. Then the minimal cover under difference of Γ is the
minimal cover under difference of X.

EP resolves conflicting statistical data concerning χ by applying two prin-
ciples to the set of potential probability assignments, Richness and Specificity,
to yield a class of relevant statements. The (controversial) principle of Strength
is then applied to this set of relevant statistical statements, yielding a unique
probability interval for χ. For discussion of these principles, see [133].

We illustrate these principles in terms of a pair (ϕ, ϑ) of conflicting statistical
statements for χ, and represent their respective reference formulas by ρϕ and
ρϑ. The probability interval assigned to χ is the shortest cover of the relevant
statistics remaining after applying these principles.

1. [Richness] If ϕ and ϑ conflict and ϑ is based on a marginal distribution
while ϕ is based on the full joint distribution, eliminate ϑ.
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2. [Specificity] If ϕ and ϑ both survive the principle of richness, and

if ρϕ ⊂ ρϑ, then eliminate 〈τ, ρj , [l, u]〉 from all difference sets.

The principle of specificity says that if it is known that the reference class
ρϑ is included in the reference class ρϕ, then eliminate the statement ϕ. The
statistical statements that survive the sequential application of the principle of
richness followed by the principle of specificity are called relevant statistics.

3. [Strength] Let ΓRS be the set of relevant statistical statements for χ
with respect to Γδ, and let the set {Λ1, . . . ,Λn} be the set of difference
sets of ΓRs. The principle of strength is the choosing of the minimal
cover under difference of ΓRS , i.e., the selection of the shortest cover in
{Cov(Λ1), . . . , Cov(Λn)}.

The evidential probability of χ is the minimal cover under difference of ΓRS .
We may define Γε, the set of practical certainties, in terms of a body of

evidence Γδ:

Γε = {χ : ∃ l, u (Prob(p¬χq,Γδ) = [l, u] ∧ u ≤ ε)},
or alternatively,

Γε = {χ : ∃ l, u (Prob(χ,Γδ) = [l, u] ∧ l ≥ 1− ε)}.
The set Γε is the set of statements that the evidence Γδ warrants accepting; we
say a sentence χ is ε-accepted if χ ∈ Γε. Thus we may add to our knowledge
base statements that are non-monotonic consequences of Γδ with respect to a
threshold point of acceptance.

Finally, we may view the evidence Γδ as providing real-valued bounds on
‘degrees of belief’ owing to the logical structure of sentences accepted into Γδ.
However, the probability interval [l, u] associated with χ does not specify a range
of degrees of belief between l and u: the interval [l, u] itself is not a quantity,
only l and u are quantities, which are used to specify bounds. On this view,
no degree of belief within [l, u] is defensible, which is in marked contrast to the
view offered in §7, Objective Bayesianism, which utilizes an entropic principle
to assign degrees of belief [144].

4.1.2 Evidential Probability and Partial Entailment

The primary question that EP addresses is the assignment of evidential proba-
bility to a statement χ given a set of evidential certainties, Γδ. This question,
as we have seen, primarily concerns how to select relevant statistical statements
and to resolve various types of conflicts that may appear in this set. The selec-
tion of statistics in Γδ relevant to χ depends on (1) the particular selection of χ
and the target formulas in Γδ that are coextensive with χ; (2) the relationships
between the intervals of all direct inference formulas whose target formulas are
coextensive with χ; (3) the arity of the reference predicates associated with
conflicting intervals; and (4) whether one reference class is more specific than
another. None of these questions rely upon a probabilistic semantics for an
answer.

One difference between the EP logic of probabilities and the standard se-
mantics for probabilistic logic is that it does not follow in EP that all models of
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Γδ = {ϕ1
1, . . . , ϕ

1
n} are models under which Prob(χ,Γδ) = [l, u] holds, since all

supersets of Γδ are also models of Γδ but it is possible that a superset of Γδ is
not an EP-model of the assignment [l, u] to χ. New evidence may be added to
the knowledge base Γδ which either narrows or broadens the interval assigned
to χ. Since relevant statistics for χ are determined by a ranking of reference for-
mulae among potential probability statements for χ, a change to either logical
or statistical information in Γδ may effect a change to the ranking of evidence
for χ, thus altering the composition of the set ΓRS ⊆ Γδ of relevant statistics
for χ. EP is foremost a non-monotonic logic.

A modelM of Lep is a pair, 〈D, I〉, whereD is a two-sorted domain consisting
of mathematical objects, Dm, and a finite set of empirical objects, De. I is an
interpretation function that is the union of two partial functions, one defined
on Dm and the other on De. Otherwise M behaves like a first-order model:
the interpretation function I maps (empirical/mathematical) terms into the
(empirical/mathematical) elements of D, monadic predicates into subsets of D,
n-arity relation symbols into Dn, and so forth. Variable assignments also behave
as one would expect, with the only difference being the procedure for assigning
truth to direct inference statements.

The basic idea behind the semantics for direct inference statements is that
the statistical quantifier ‘%’ ranges over the finite empirical domain De, not
the field terms l, u that denote real numbers in Dm. This means that the only
free variables in a direct inference statement range over a finite domain, which
will allow us to look at proportions of models in which a sentence is true. A
satisfaction set of an open formula ϕ whose only free n variables are empirical
is the subset of Dn that satisfies ϕ.

A direct inference statement p%x(τ(x), ρ(x), [l, u])q is true in M under vari-
able assignment v iff the cardinality of the satisfaction sets for the open formula
ρ under v is greater than 0 and the ratio of the cardinality of satisfaction sets
for pτ(x∗)∧ρ(x∗)q over the cardinality of the satisfaction sets for pρ(x)q (under
v) is in the closed interval [l,u], where all variables of x occur in ρ, all variables
of τ occur in ρ, and x∗ is the sequence of variables free in ρ but not bound by
%x [88].

The set ΓRS contains all sets of undominated direct inference statements
with respect to a particular sentence, χ. Corresponding to the relevant statistics
for the pair 〈χ,ΓRS〉 are sets of satisfaction sets, which are called support models
of Γδ for χ. EP is sound in the following sense: if Prob(χ,Γδ) = [l, u], then the
proportion of support models of Γδ in which χ is true lies between l and u [88].
This result is the basis for EP’s semantics for partial entailment.

4.2 Representation

For the finite set M of support models Mi (1 ≤ i ≤ n) defined on the pair
〈χ,Γδ〉, if the proportion of the models inM of ϕ1, . . . , ϕn that are also models
of χ is between [l, u], then

ϕ1
1, . . . , ϕ

1
n |m ψ1,

which in Lep is represented as:∧
i

p%x(τ(x), ρ(x), [l′, u′])1
i
q
∧
j

ϕ1
j |m 〈χ, [l, u]〉1,
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where the LHS consists of the accepted evidence in the knowledge base Γδ, i.e.,
the conjunction of all direct inference statements (p%x(τ(x), ρ(x), [l, u])1q) and
all logical knowledge about relationships between classes (ϕ1), the entailment
relation |m is non-monotonic, the RHS is the statement ψ asserting that the
target sentence χ is assigned [l, u], where ψ is true when the proportion of
support models of ∧

i

p%x(τ(x), ρ(x), [l′, u′])1
i
q
∧
j

ϕ1
j

that also satisfy χ is between [l, u].

4.3 Interpretation

The EP semantics answer to

ϕX1
1 , . . . , ϕXnn |m ψ?,

is restricted to when ϕ1
1, . . . , ϕ

1
n, so Y is trivially 1. When ψ expresses 〈χ, [l, u]〉,

then the assignment of evidential probability to χ given ϕ1, . . . , ϕn is calculated
by finding the proportion of the models inM of ϕ1

1, . . . , ϕ
1
n that are also models

of χ.
The relation |m is not governed by probabilities assigned to sentences in Γδ.

Instead, the meaning of |m is given by rules for resolving conflicts among accepted
evidence about frequencies that are relevant to χ. Expressing this behavior
of EP in terms of Schema (1) allows us to represent several sharp differences
between evidential probability and the other approaches in this paper.

But Schema (1) also allows us to pose two distinct inferential questions for
evidential probability. The first question is the question of how to assign eviden-
tial probability to a statement given some evidence, which is the Kyburg-Teng
semantics for EP. We call this first-order evidential probability. The second ques-
tion concerns the risk associated with inferring an EP probability for a statement
on some particular set of evidence. We call this second-order evidential prob-
ability. To connect second-order EP with first-order EP we need to consider
the possible impact false evidence would have on a particular assignment of ev-
idential probability. We call this counter-factual evidential probability. In the
remainder we show how to supply Schema (1) with first-order EP-semantics,
present a theory of counter-factual evidential probability, then present a theory
of second-order EP and show how to supply Schema (1) with second-order EP
semantics.

4.3.1 First-order Evidential Probability

To understand the entailment relation in EP it is necessary to decouple the
semantics for |m from probabilities. We achieve this by assigning 1 to each
sentence in Γδ while simultaneously observing that |m does not satisfy the KLM
System P semantics [79] as might otherwise be expected [89].12

12The KTW properties [89] are similar to, but strictly weaker than, the properties of the
class of cumulative consequence relations specified by System P [79]. To yield the axioms of
System P, replace (µ |= ν) by (µ |m ν) in Cautious Monotony and Conclusion Conjunc-
tion, and add Premise Disjunction: if µ |m ν and ξ |m ν then µ ∨ ξ |m ν.
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Proposition 4.7 (Properties of EP Entailment) Let |= denote classical con-
sequence and let ≡ denote classical logical equivalence. Whenever µ ∧ ξ, ν ∧ ξ
are sentences of Lep,

Right Weakening: if µ |m ν and ν |= ξ then µ |m ξ.

Left Classical Equivalence: if µ |m ν and µ ≡ ξ then ξ |m ν.

(KTW) Cautious Monotony: if µ |= ν and µ |m ξ then µ ∧ ξ |m ν.

(KTW) Conclusion Conjunction: if µ |= ν and µ |m ξ then µ |m ν ∧ ξ.

This approach to defining EP-entailment presents challenges in handling
disjunction in the premises since the KLM disjunction property admits a novel
reversal effect similar to, but distinct from, Simpson’s paradox [89, 142]. This
raises a question over how to axiomatize EP. One approach, which is followed
by [63] and considered in [89], is to replace Boolean disjunction by ‘exclusive-
or’. While this route ensures nice properties for |m, it does so at the expense
of introducing a dubious connective into the object language that is neither
associative nor compositional.13 Another approach explored in [89] is a weak-
ened disjunction axiom that, together with the axioms of Proposition 4.7, yield
a sub-System P non-monotonic logic that preserves the standard properties of
the positive Boolean connectives.

4.3.2 Counter-Factual Evidential Probability

First-order evidential probability uses the knowledge about relationships be-
tween classes to pick out that subset of potential statistical statements in Γδ
that are relevant to χ. We may now ask a different question about the bearing
of evidence in Γδ upon χ.

Suppose we would like to know the evidential probability of χ given Γδ if
some accepted evidence in Γδ were false. We can answer this question piece-meal
by comparing [l, u] of Γδ |m 〈χ, [l, u]〉 to the [l′, u′] of {Γδ−{ϕ}}∪¬ϕ |m 〈χ, [l′u′]〉,
where the truth value of ϕ is changed from true to false to represent a contrary
to (accepted) fact in Γδ. We say then that {Γδ − {ϕ}} ∪ ¬ϕ |m 〈χ, [l′, u′]〉 is
a counter-factual argument for χ with respect to Γδ. The statement ϕ may
be either a logical formula or a direct inference statement, and the change of
truth value of a ϕ in Γδ may either be relevant to χ (i.e., when [l, u] 6= [l′, u′])
or irrelevant to χ (i.e., when [l, u] = [l′, u′]). The set ∆ = {ϕ1, . . . , ϕm} of
sentences in Γδ that can be relevant to χ is called the set of possible evidence
for χ with respect to Γδ.

The possible evidence ∆ ⊆ Γδ for χ is a set of 2m conditional probabilities,
P (χ|ϕe11 , . . . , ϕ

em
m ), where

(i.) e1, . . . , em ∈ {1, 0}, and

(ii.) P (χ|ϕe11 , . . . , ϕ
em
m ) = |[l,u]∩[l′,u′]|

|[l,u]| , when ei = 1 ∨ ei = 0, for all 1 ≤ i ≤ m.

Condition (i) specifies that ei is the truth assignment to ϕi and condition
(ii) measures the overlap between the actual evidence and an item of possible

13Example: ‘A xor B xor C’ is true if A, B, C are; and ‘(A xor B) xor C’ is not equivalent
to ‘A xor (B xor C)’ when A is false but B and C both true.
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evidence from a counter-factual argument. Comparing the actual, first-order
evidential probability to itself is identity, i.e., 1, which is the special case of (ii.)
when ei = 1, for all 1 ≤ i ≤ m. A measure of 0 denotes no overlap between
actual and counter-factual evidence.

4.3.3 Second-Order Evidential Probability

Return now to the introduction of this section and to our brief discussion
of accepted evidence. Γδ is the set of accepted but uncertain premises, and
we have represented that feature in our semantics for first-order EP entail-
ment by assigning 1 to each premise and supplying a sub-System P entail-
ment relation, |m. There is considerable controversy over whether the Ky-
burgian theory of acceptance should be replaced by a probabilistic account
[70, 81, 13, 95, 62, 84, 85, 97, 126]. Indeed, the controversy over this issue
mirrors another in statistics regarding R. A. Fisher’s fiducial argument and the
availability of fiducial probabilities for inference, which is a topic we return to
in Section §5.

For the purposes of this paper we remain neutral on Kyburg’s theory of
acceptance and instead consider what EP might look like were its first-order logic
of probabilities embedded within a ‘second-order’ probabilistic logic. A theory of
second-order EP inference would aim to provide a means to evaluate a sequence
of EP-inferences. Rather than assign 1 to each ϕi, we may substitute Xi by the
practical certainties interval [1 − δ, 1] if ϕi is a direct inference statement, and
by 1 otherwise. We will then calculate the degree of overlap among all counter-
factual arguments for χ with respect to Γδ. Finally, we propose to strengthen
the entailment relation from |m to |= to anticipate an approach to computing
second-order EP presented in §11.

Second-order evidential probability is intended to assign an estimate to the
‘degree of risk’ associated with inferring an EP probability for χ on the basis of
Γδ. Second-order EP then may be thought to provide a measure of robustness
in the evidence for assigning [l, u] to χ, thus providing a measure of confidence
in Prob(χ,Γδ).

A candidate semantics for second-order EP that answers ϕX1
1 , . . . , ϕXnn |= ψ?

is given by

P (ψ) =
1∑

e1,...,em=0

P (ψ|ϕe11 , . . . , ϕ
em
m ) · P (ϕe11 , . . . ϕ

em
m ),

where ψ states that Prob(χ,Γδ) = [l, u], each ϕi is either a direct inference
statement or logical formula in Γδ and Xi is [1 − δ, 1] or 1, respectively. The
formula χ is just a sentence of Lep, but ψ is the proposition expressing the as-
signment of [l, u] to χ from Γδ and Y is a measure of robustness for this assign-
ment calculated by summing all counter-factual arguments for χ with respect
to Γδ—i.e., all 2m conditional probabilities corresponding to the permutations
of truth-assignments to the premises, ϕ1, . . . , ϕm.

Note three assumptions behind this semantics for second-order EP. The first
is that the risk intervals [1−δ, 1] are probabilities attached to elements in Γδ, and
this assumption is critical to give a probabilistic semantics to second-order EP
inference. The second assumption concerns the way in which the probabilities
are calculated, which is given by the theory of counter-factual EP presented
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in §4.3.2. The particular details of this theory are not critical to the theory
of second-order EP, and we anticipate other accounts based upon alternative
distance measures. Third, each item of evidence ϕ is assumed to be independent
of one another. This assumption Kyburg would oppose vigorously. Even so, our
interest in this paper is to present a basic logic of second-order EP. While this
independence assumption is important for computation, it is not crucial to a
theory of second-order EP inference.

5 Statistical Inference

An important application of probability theory is the use of statistics in sci-
ence, in particular classical statistics as devised by Fisher and Neyman and
Pearson. In this section we indicate when and how it can be accommodated by
Schema (1).

5.1 Background

This section briefly discusses the inferential status of classical statistics, and
then considers two attempts at providing an inferential representation of it,
namely by fiducial probability and by evidential probability.

5.1.1 Classical Statistics as Inference?

Classical statistical procedures concern probability assignments PH(D) over
data D relative to a statistical hypothesis H. The crucial property of these
procedures is that they only involve direct inference: they involve the deriva-
tion of the probability of some event for a given statistical hypothesis. In turn,
these probability assignments feature in other functions defined over the sam-
ple space, such as estimators and tests. In this paper we restrict attention to
Neyman-Pearson tests and Fisher’s theory of estimation.

Classical Statistical Procedures. Let ΩH denote a statistical model, con-
sisting of statistical hypotheses Hj with 0 ≤ j < n that are mutually exclusive.
The assignment that Hj is true is written hj . Let ΩD be the sample space,
consisting of observations of binary variables Di. For a specific sample, i.e. an
assignment to a set of Di, we write des, where s is an m-vector of indices i of the
variables Di, and e is a binary m-vector encoding whether Di is true or false,
so that des = d

e(1)
s(1) · · · de(m)

s(m). If s is simply 〈1, 2, . . . ,m〉 we write de, and if s and
e are not given by the context, we write d for a specific sample and D for data
when treated as a variable. All these assignments are associated with subsets
of the sample space, D ∈ ΩD.

Restricting ΩH to n = 2, we can compare the hypotheses h0 and h1 by
means of a Neyman-Pearson test function. See Barnett [5] and Neyman and
Pearson [105] for the details.

Definition 5.1 (Neyman-Pearson Hypothesis Test) Let T be a set func-
tion over the sample space ΩD,

T (D) =

{
1 if Ph1 (D)

Ph0 (D) > t,

0 otherwise,
(9)
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where Phj is the probability over the sample space determined by the statistical
hypothesis hj. If T = 1 we decide to reject the null hypothesis h0, else we reject
the alternative h1.

The decision to reject is associated with a significance and a power of the test:

SignificanceT (D) =
∫

ω∈D
T (D)Ph0(D)dω,

PowerT (D) =
∫

ΩD

(1− T (D))Ph1(D)dω.

In their fundamental lemma, Neyman and Pearson prove that the decision has
optimal significance and power for, and only for, likelihood-ratio test functions
T .

Among a larger set of statistical hypotheses, taking n ≥ 2, we may also
choose the best performing one according to an estimation procedure. The
maximum likelihood estimator advocated by Fisher varies with the probability
that the hypotheses assign to points in the sample space. See Barnett [5] and
Fisher [41] for the details.

Definition 5.2 (Maximum Likelihood Estimation) Let ΩH be a model with
hypotheses Hθ, where θ ∈ [0, 1]. Then the maximum likelihood estimator is

θ̂(D) = {θ : ∀h′θ
(
Phθ′ (D) ≤ Phθ′ (D)

)}, (10)

where D is again generic data. So the estimator is a set, typically a singleton,
of those values of θ for which the likelihood of hθ is maximal. The associated
best hypothesis we denote with hθ̂.

We may further compute the so-called confidence interval. Usually parameter
values that are near to the estimator assign only slightly smaller probabilities
to the sample, so that we can for example define a region R of parameter values
for which the data are not highly unlikely, R(D) = {θ : Phθ (D) > 1%}. The
definition of the region of parameter values that is usually termed the symmetric
95% confidence interval follows this idea but is slightly more complicated:

C95(D) = {θ : |θ − θ̂| < λ , and
∫ θ̂+λ

θ̂−λ
PHθ (D)dθ = .95}.

In this way every element of the sample space αe is assigned a region of param-
eter values, which expresses the quality of the estimate.

Procedure vs Inference. These are just two examples of classical statistical
procedures. More generally, running a classical procedure comes down to col-
lecting specific data d, going to the corresponding set or point d in the sample
space, and then looking up the values of functions like T , θ̂, and C95 for that
point. Typically, these values are themselves associated with certain probabil-
ity assignments over the sample space. For example, the Neyman-Pearson test
function may indicate that the null hypothesis can be rejected, but with that
indication comes a probability for error, the significance level. And the Fisher
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estimation function may be the value for the mean of some normal distribution,
but there is always some confidence interval around the mean. Much of classi-
cal statistics is concerned with these probabilities associated with the tests and
estimations.

Classical statistical procedures make constant use of direct inference, which
concerns probability assignments over the sample space ΩD. Moreover, the pro-
cedures are about the hypotheses Hθ. They concern the rejection or a best
estimate for hypotheses, and they associate probabilities of error to these de-
cisions concerning hypotheses. But importantly, the procedures do not assign
probabilities to the space ΩH . Neyman and Pearson [105] are emphatic that
classical statistical procedures must not be seen as inferences about hypotheses
to start with. They guide decisions about them, they have certain error rates
associated with them, but they are not inferential.

Because the decisions are not cast in terms of probabilities over hypothe-
ses, it is doubtful whether we can faithfully accommodate classical statistics in
the inferential problem of Schema (1). In representing the procedures involving
errors of estimations and tests, we cannot employ probabilities assigned to hy-
potheses: function values such as T (D), θ̂(D), and C95(D) cannot be expressed
in a probability assignment over hypotheses, or anything like it. There are, in
other words, objections to forcing classical statistics into the inferential format,
and so there are objections to formulating a probabilistic logic for it. Neverthe-
less, in the following we investigate how strict these objections are, and what
an inferential format may look like.

5.1.2 Fiducial Probability

One way of capturing classical statistics in terms of inferences has been sug-
gested by Fisher [38, 39, 41]. Applications of his so-called fiducial argument
allow us to derive probability assignments over hypotheses from a classical sta-
tistical procedure, so that classical statistics may after all be reconciled with an
inferential attitude.

The Fiducial Argument. Suppose that it is known that a quantity, F , is
distributed normally with an unknown mean, µ, and a known variance σ2 of 1.
After drawing a sample of size 1, it is observed of that sample that F takes the
(continuous) value r. Since µ − r is known to be normally distributed, we can
look up the table value of the probability that |µ−r| exceeds any given amount.
For instance, if r = 10 is observed, we can, by direct inference, infer that the
probability that µ is between 9 and 11 is 0.68. This example is an illustration
of Fisher’s fiducial inference. The argument draws an inference from observable
data (that F takes r in the sample) to a statistical hypothesis (the mean µ of F )
without following the form of inverse inference: while the inference relies upon
the statistical knowledge concerning the distribution of F , it does not appear
to rely upon any knowledge concerning the distribution of µ. A probability
assignment over µ can thus be derived without assuming any prior probability
assignment.

The fiducial argument is controversial, however, and its exact formulation is
a subject of debate. The controversy stems from Fisher setting out goals for fidu-
cial inference that do not appear mutually consistent [125], and is compounded
by Fisher’s informal account of fiducial probability. Bayesian statisticians such
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as Lindley [98] and Good [44] argue that fiducial probability is based on an
implicit, ‘improper’ prior probability, in part because Fisher himself thought
that the output of a fiducial argument should always be available for Bayesian
inference. But if Lindley and Good are right, this would bring us back to the
worry that classical statistics cannot be done justice in an inferential schema.

Dempster [28] and Hacking [45] show that the fiducial argument relies on
specific assumptions concerning statistical relevance, and Fisher’s own informal
description of how to resolve conflicting statistical laws has suggested to some
that there is no principled theory of fiducial inference at bottom. We return to
this point in the next section when we discuss evidential probability.

Dawid and Stone [25] provide a general characterisation of the set of statisti-
cal problems that allow for application of the fiducial argument, using so-called
functional models. As will be spelled out below, the functional relation between
data, hypotheses, and probabilistic elements must be smoothly invertible. But
many statistical problems fall outside this set, pointing to the inconsistency we
mentioned at the start. If one insists that the output of the fiducial argument
should be available for Bayesian inference, then it seems rather ad hoc to say
that the inferential schema for classical statistics is supposed to apply only to
certain cases. On the other hand, the point can be turned around to highlight
when it is appropriate to presume knowledge of a full, joint distribution.

Deriving Fiducial Probability from Functional Models. Functional mod-
els reveal the limits of the fiducial argument, but as Kohlas and Monney [76]
show, they also provide the starting point for an adapted and more general
version of the fiducial argument, based on what they call assumption-based rea-
soning. Their view is not entirely new: Arthur Burks [8] was an early proponent
of a presupposition based view of inductive inference.

New in the approach of Kohlas and Monney is that they employ assumption-
based reasoning to generate degrees of support and possibility. The theory of
support and possibility has already been discussed in §3. Its use in the adapted
version of the fiducial argument is that the evidence is not taken to induce a
fiducial probability over the statistical hypotheses. Rather it induces degrees of
support and probability; these degrees coincide in a probability measure only if
the functional model is of the type that makes the traditional fiducial argument
applicable.

Let the model ΩH and sample space ΩD be as in the foregoing. A functional
model can be characterised as follows.

Definition 5.3 (Functional Model) Let ΩH be a statistical model, and ΩW
a set of stochastic elements ω. A functional model consists of a function

f(Hθ, ω) = D, (11)

and a probability assignment P (ω) over the stochastic elements in ΩW .

That is, a functional model relates every combination of a statistical hypothesis
Hθ and an assumed stochastic element ω to data D. These stochastic elements
are elements of the space ΩW . They must not be confused with the de that
denote valuations of the variables D, which will in the following be abbreviated
with d. We define Vd(hθ) as the set of ω for which f(hθ, ω) = d, where d
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represents an assignment to the variable D. We can then derive the likelihoods
of the hypotheses hθ:

P (d|hθ) =
∫

ω∈Vd(hθ)

P (ω)dω. (12)

A functional model is smoothly invertible if there is a function f−1(Hθ, D) = ω,
so that relative to the sample D, each hypothesis Hθ is associated with exactly
one stochastic element ω.

Now consider the hypothesis hI = ∪θ∈Ihθ, determined by an interval I. The
set Ud(ω) = {hθ : f(hθ, ω) = d} covers exactly those hypotheses that point to
the sample d under the assumption of the stochastic element ω. We define the
support Sup and the possibility Pos of the data d for the hypothesis hI as

SuphI (d) = {ω : Ud(ω) ⊂ hI} (13)
PoshI (d) = {ω : Ud(ω) ∩ hI 6= ∅}. (14)

The set SuphI (d) ⊂ ΩW consists of all stochastic elements that, together with
the data d, entail the hypothesis hI , while the set PoshI (d) ⊂ ΩW consists of all
those stochastic elements that, together with the data d, leave the hypothesis
hI possible. In the terminology of section §3 the former are the arguments for
hI , while the latter are the complement of the arguments against hI .

We can now define the degrees of support and possibility for hI accordingly,
as

dsp(hI) =
∫

ω∈SuphI
(d)

P (ω)dω, (15)

dps(hI) =
∫

ω∈PoshI (d)

P (ω)dω. (16)

So the degrees of support and possibility derive from the probability assignment
over ΩW , the stochastic elements in the functional model. As illustrated in
Figure 4, the probability over ΩW is transferred to degrees of support and
possibility over the model ΩH .

The standard fiducial argument is a special case of the derivation of fiducial
degrees of support and possibility. If f is smoothly invertible, the sample d
entails a one-to-one mapping between ΩW and ΩH . In Figure 4, the area d must
then be replaced by a line. As a result, the degrees of support and possibility for
hI collapse to a single sharp value, Pd(hI) = dsp(hI) = dps(hI). The probability
distribution over ω can be transferred directly onto the single hypotheses hθ.

The generalised fiducial argument is nice from the perspective of the progic-
net programme, because it enables us to incorporate classical estimation in the
inferential format of Schema (1), even if we do not have a smoothly invertible
functional relation. But as indicated in the foregoing, the standard fiducial ar-
gument does assume the invertibility of f . For the sake of simplicity, we will
only return to this more narrow application of functional models for fiducial
probability in section §12.
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Figure 4: The rectangle shows all combinations of Hθ and ω. Those combinations
for which f(Hθ, ω) = d are included in the shaded area. The hypothesis hI , which
spreads out over a number of hθ, has a minimal and a maximal probability: it is at
least as probable as the union of stochastic elements ω that entail d with every element
hθ ∈ hI , and it is at most as probable as the union of stochastic elements ω that entail
d with at least one element hθ ∈ hI .

5.1.3 Evidential Probability and Direct Inference

Direct inference, which is sometimes called the frequency principle, assigns a
probability to a particular individual or event having a property on the ba-
sis of known statistical frequencies of that property occurring. Sometimes we
want to assign a probability to a statistical hypothesis on the basis of observed
data, however, and we remarked above that the fiducial argument was Fisher’s
strategy to reduce ‘indirect’ inference to a form of direct inference.

For Fisher, the applicability of a statistical regularity R to a particular in-
dividual t requires the specific knowledge that R is relevant to t and total igno-
rance of any competing law R′ that is also relevant to t. In simplest terms, if
all we know of t is that the statistical regularities of R apply to t, then we may
treat t as a random event with respect to R and infer that those regularities
characterize t. But there are complications.

One problem is that often there are several statistical regularities that we
know apply to t, but this collection may yield conflicting assignments of proba-
bility. Another complication concerns precisely how ignorance and knowledge is
supposed to work to effect randomization in a successful inference. We’ve seen
a theory that addresses the issue of conflict in §4. Indeed, evidential probability
fully embraces the view that there are forms of statistical inference after all (cf.
Neyman [104]). Now we focus on the issue of epistemic randomness.

Suppose we observe a sample of n balls, drawn with replacement, from an urn
of black and white balls of unknown number and we wish to draw an inference
about the proportion of white balls in U from those n observations.

A sample of n draws is rationally representative at 0.1 if and only if the
difference between the observed proportion of white balls in the sample n and
the actual proportion of white balls in the urn is no greater than 0.1. If 100
draws are made, 62 of which are white, the sample is rationally representative
at 0.1 just in case the proportion of white balls in the urn is between 0.52 and
0.72. If we know that the urn is composed of exactly as many white balls as
black, then the sample n would not be rationally representative at 0.1, for we
would have then expected the proportion of white balls to be between 0.4 and
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0.6.
Suppose we do not know the proportion of white balls and black balls, which

is to suppose that we wish to estimate the proportion of white to black in the
urn from observing the proportion of samples from the urn. We might, however,
know enough about our experimental procedure to accept that it is rationally
representative. In such cases there are properties of rationally representative-
ness that may be exploited to make informative inferences. By using a normal
distribution approximation for the binomial frequencies, we may infer that be-
tween 95% and 100% of all samples of n-fold sequences (n = 100) of independent
outcomes from a binomial process are rationally representative at 0.1. Assum-
ing that our sample of 100 balls is a random member of the class of all 100-fold
trials, we may then infer non-trivial conclusions about the population. Specifi-
cally, we may infer that the evidential probability that the sample of 62 white
balls of 100 is rationally representative at 0.1 is [0.95, 1]. In other words, the
evidential probability is no less than 0.95 that the proportion of white balls in
the urn is between 0.52 and 0.72. If our threshold for rational acceptance is
0.95 or less, then we would simply say that it is rational to accept that the
proportion of white balls is between 0.52 and 0.72.

But what grounds do we have for making the substantive assumption that
our sample of 100 balls is a random member of the collection? This question
concerns where to place the burden of proof, which concerns the interplay be-
tween specified knowledge and specified ignorance in statistical estimation. The
policy of evidential probability is to treat randomness as a default assumption
[87, 140] rather than an explicit condition that is satisfied. Randomness is as-
sumed to hold on the basis of passing tests designed to detect bias, which is a
policy matched by practice. Asserting that a sample passes such tests does not
entail that the sample is random, but rather indicates that no evidence of bias
was found in light of this battery of tests. That a sample ‘satisfies’ epistemic
randomness, then, translates to the absence of evidence that the sample is bi-
ased. Some may be uncomfortable with assuming that epistemic randomness
holds without direct evidence, but notice that if we could observe the ratio-
nal representativeness property directly then we would not be in the position
of needing to perform an inverse inference, for having direct evidence that a
sample is representative is in effect is to know the statistical distribution of the
population already.

There is a price to viewing the fiducial argument in terms of a non-demonstrative
logic of probabilities rather than a species of probabilistic logic. EP yields prob-
ability assignments that cannot be readily used in subsequent inference [144],
assignments that are often incompatible with Bayesian methods [85, 126], and
yield credal probabilities that cannot (always) be managed by conditionalization
[82, 95]. Even so, the approach offers rich insight into understanding Fisher’s
fiducial argument in particular, and classical statistical inference qua inference
in general.

5.2 Representation

We now consider, both for inferences concerning fiducial and evidential proba-
bility, how the inferences may be represented in Schema (1).
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5.2.1 Fiducial Probability

Using functional models, we can represent classical statistical estimation in
Schema (1) by employing fiducial degrees of support and possibility:

({(hθ, ω) : f(hθ, ω) = d})1
, ωP (ω) |= h

[dsp,dps]
I . (17)

Here hI refers to the statistical hypothesis of interest, as defined above, and ω
to the stochastic element of the functional model, over which the probability
assignment P (ω) is given. The function f determines how these elements relate
to possible data D. The set {(Hθ, ω) : f(Hθ, ω) = d} refers to all combinations
of hypothesis and stochastic element that lead to d as evidence. The set of
these combinations (Hθ, ω) is given probability 1, meaning that the evidence
occurred. This induces an interval-valued assignment over the hypothesis hI .14

As said, in the case that the function f is smoothly invertible the interval-
valued assignment to hI collapses to a sharp probability value. The fiducial
argument then becomes:

({(Hθ, ω) : f(Hθ, ω) = d})1
, ωP (ω) |= h

Pd(hI)
I , (18)

where Pd(hI) = SuphI (d) = PoshI (d). In the second part of this paper we will
mainly explore the use of networks in determining sharp fiducial probabilities.

5.2.2 Evidential Probability and the Fiducial Argument

Functional models offer one way of representing Fisher’s fiducial argument by
transforming statistical reduction into a form of demonstrative inference. But
Fisher was very explicit in arguing that statistical reduction should be viewed
as a type of logical, non-demonstrative inference [37, 40]. Unlike demonstrative
inference from true premises, the ‘validity’ of a non-demonstrative, uncertain
inference can be undermined by additional premises: a conclusion may be drawn
from premises supported by the total evidence available now, but new premises
may be added that remove any and all support for that conclusion. Fisher, it
turns out, was an early proponent of non-monotonic logic.

First-Order EP and the Fiducial Argument. With this in mind we can
represent the fiducial argument as a special case of a first-order EP argument
by

(
∧
i

p%x(τ(x), ρ(x), [l′, u′])1
i
q : f(χ, ρ(x)[x|ωχ]) ≥ λ})

∧
j

ϕ1
j |m 〈χ, [l, u]〉1. (19)

Here f(χ, ρ(x)[x|ω]) = λ selects a subset of relevant statistics for χ from a
knowledge base Γδ by a substitution of variable x by constants ω induced by
χ such that each relevant statistical statement is rationally representative of χ
to degree λ. The function f , then, effects the reduction of ‘indirect’ inference
to a form of direct inference. Then the machinery of EP (§4.1.1) is run on this
restricted set of rationally representative direct inference statements to assign
the probability interval [l, u] to hypothesis χ.

14Clearly, in quite a few cases the interval attached to the hypothesis will be [0, 1], but it
is beyond the scope of this paper to investigate when this occurs.
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Second-Order EP and the Fiducial Argument. If the fiducial argument
is viewed as a restricted form of first-order EP inference, then it is natural to
inquire about the robustness of a particular assignment of evidential probability
made by a fiducial argument. Then

(
∧
i

p%x(τ(x), ρ(x), [l′, u′])Xii
q : f(χ, ρ(x)[x|ωχ]) ≥ λ})

∧
j

ϕ
Xj
j |= 〈χ, [l, u]〉Y ,

represents the second-order probability Y to the statement expressing that the
first-order EP probability of χ is [l, u], where the LHS includes the logical and
possible, relevant statistical evidence under the ‘rational representativeness to
degree λ’ restriction, f(χ, ρ(x)[x/ωχ]) ≥ λ. The difference between second-order
EP probability and a second-order EP probability of a fiducial argument is that
in the latter case the premises that (partially) determine the function f are held
fixed rather than allowed to vary. Thus, the fiducial argument here is a type of
conditional second-order EP probability. We return to this briefly in §5.3.2.

5.3 Interpretation

We show how the inferences represented in Schema (1) can be interpreted as
concerning inferences of fiducial and evidential probability, respectively.

5.3.1 Fiducial Probability

Insofar as classical statistical procedures can be viewed as inferences, we can also
interpret the central question of Schema (1) as an inference in classical statistics.
The set of probability distributions that we start out with is defined over the
space of hypotheses and stochastic elements, ΩH ×ΩW . One type of premise in
the inference is then given by the data d, represented as a set of combinations of
hypotheses Hθ and stochastic elements ω, namely {(hθ, ω) : f(hθ, ω) = d}. The
premise given by the data is that we restrict the set of probability distibutions
to those that assign P ({(hθ, ω) : f(hθ, ω) = d}) = 1. Another type of premise
is presented by the probability distribution over the stochastic elements ω: we
restrict the set of probability functions to those for which the marginal P (ω)dω
is given by some specific function. With these two premises in place, we can
derive the degrees of support and possibility using the general framework of this
paper.

We must emphasise, however, that this inferential representation, and in-
terpretation, of classical statistical procedures runs into difficulty with dynamic
coherence. The foregoing shows that for each particular sample d we can set up
a generalised fiducial argument and derive degrees of support and possibility.
However, as shown by [125], additional samples d′ cannot be incorparated in
the inference by a simple conditionalisation on that data. That is, if we find
additional data sets d′ and compute the degrees of support and possibility as
dsp(hI |d′) and dps(hI |d′), using the fiducial degrees of support and possibility
that were based on d as priors, then the results may deviate from the result of
running the fiducial argument with d ∧ d′ and deriving degrees of support and
possibility directly, using a different functional relation. As is explained further
by Seidenfeld, this reveals that fiducial probabilities are sensitive to a typically
Bayesian problem, namely that the principle of indifference does not single out a
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unique prior. This severely restricts the use of the generalised fiducial argument
in a logical representation of classical statistical inference.

5.3.2 Evidential Probability

First-Order EP and the Fiducial Argument. To interpret

ϕX1
1 , . . . , ϕXnn |≈ ψ?,

as an EP reconstruction of fiducial inference, we first replace |≈ by |m of first-
order EP-entailment, since the fiducial argument is interpreted on this view to
be a non-demonstrative inference. Second, we interpret the premises to include
logical information and direct inference statements, just as in §4, and add to this
a function f(χ, ρ(x)[x/ω]) ≥ λ that restricts the set of relevant direct inference
statements to just those that are rationally representative to at least degree
λ. The function f is a considerable simplification of matters, for what will
appear in the premises are statements concerning drawn samples and the known
statistical classes to which they belong together with knowledge that would rule-
out particular statistical statements from use [87, 140, 143].

Once this is in place, then ψ is understood to express the pair 〈χ, [l, u]〉,
which is the assignment of evidential probability [l, u] to χ given ϕ1, . . . , ϕn,
and this probability is the proportion of the models inM of ϕ1

1, . . . , ϕ
1
n that are

also models of χ. For details, see §4 and [88].
This approach does not resolve the controversy surrounding the fiducial ar-

gument, of course, but it does offer a view about what is behind the controversy
and also offers guidance over how to proceed in evaluating such a line of rea-
soning. On this view the problem is that we typically aren’t given information
sufficient to determine f , but rather may have partial information that we may
use to rule out particular relevant statistical statements that would otherwise
be applicable to χ. The novelty of the fiducial argument is to treat indirect in-
ference as a form of direct inference, and we see that EP uses knowledge about
a sample and its method to eliminate those reference statistics from which we
have reason to think are not representative—that fail to be rationally repre-
sentative to some specified degree, λ. The strategy for eliminating candidates
is similar to the principle of Richness, Specificity, and Strength in §4, and is a
guiding principle of EP: exploit the knowledge you have to eliminate dubious or
too-general statistics, then accept the uncertainty that remains.

Second-Order EP and the Fiducial Argument. To interpret Schema (1)
as a second-order EP probability about a particular fiducial argument is to fol-
low the general strategy of second-order EP in §4.3.3 but with one exception. To
effect the (partial) restriction of relevant statistical statements that is ideally the
task performed by the rational representativeness function f , we need to exploit
information in our knowledge base to eliminate candidate statistics and the truth
values of these statements should be held constant rather than allowed to vary
according to the theory of counter-factual EP presented in §4.3.2. There will
be meta-linguistic machinery for setting thresholds and eliminating sentences,
similar to the machinery for applying the EP rules of Richness, Specificity, and
Strength. But, supplied with such machinery, we can propose a semantics for
robust fiducial arguments simply in terms of a conditional second-order EP prob-
ability, where the conditioning event is all information in the knowledge-base
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that determines the relevant statistics whose reference classes are also rationally
representative of the statement χ of the first-order EP inference.

6 Bayesian Statistical Inference

Bayesian statistics is much more easily connected to the inferential problem of
Schema (1) than classical statistics. The feature that distinguishes Bayesian
statistical inference from classical statistics is that it also employs probabil-
ity assignments over statistical hypotheses. It is therefore possible to present
a Bayesian statistical procedure as an inference concerning probability assign-
ments over hypotheses. Recall that we called the inference of probability assign-
ments over data on the assumption of a statistical hypothesis direct. Because
in Bayesian inference we derive a probability assignment over hypotheses on the
basis of data, it is sometimes called indirect inference.

The basic structure of Bayesian statistical inference extends to Bayesian
inference outside the statistical domain, as it is for example used in philosophical
and psychological modelling. Any such inference starts with a combination of
probability assignments, from which further probability assignments are derived
using Bayes’ theorem. And because this is a theorem of probability, Bayesian
inference is also very close to the inferences dealt with in §2, which are based
solely on the axioms as well. However, links to the standard semantics and to
the role of Bayesian inference in philosophy and psychology are not discussed
here.

6.1 Background

Let ΩH × ΩD be the combination of a partition of hypotheses and a sample
space, and let P be a probability assignment over this space. We can then
define Bayesian statistical inference as follows. See Barnett [5] and Press [115]
for more detail.

Definition 6.1 (Bayesian Statistical Inference) Assume P (Hj), the prior
probabilities assigned to a finite number of hypotheses Hj with 0 < j ≤ n, and
P (D|Hj), the probability assigned to the data D conditional on the hypotheses,
called the likelihoods. Bayes’ theorem determines that

P (Hj |D) = P (Hj)
P (D|Hj)
P (D)

. (20)

Bayesian statistical inferences is the transition from the prior P (Hj) to the
posterior P (Hj |D).

Credence intervals and Bayesian estimations can all be derived from the poste-
rior distribution over the statistical hypotheses in the model.

It may be noted that the probability of the data P (D) can be hard to
compute. One possibility is to use the law of total probability,

P (D) =
∑
j

P (Hj)P (D|Hj).
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But often the interest is only in comparing the ratio of the posteriors of two
hypotheses. By Bayes’ theorem we have

P (H1|D)
P (H0|D)

=
P (H1)P (D|H1)
P (H0)P (D|H0)

,

and if we assume equal priors P (H0) = P (H1), we can use the ratio of the likeli-
hoods of the hypotheses, the so-called Bayes factor, to compare the hypotheses.

Two further remarks are in order. First note that the terms appearing in
the above equations, both hypotheses Hj and data D, refer to sets in the space
Ω = ΩD × ΩH . So we associate each statistical hypothesis Hj with an entire
sample space ΩD, and similarly every assignment d is associated with subsets
d × ΩH . This reflects that every statistical hypothesis is logically consistent
with every sample d. However, within the sample space ΩD associated with
the hypothesis Hj , there is often a designated set in ΩD with probability 1.
This set is determined by the law of large numbers, applied to the probability
assignment or likelihood function, P (D|Hj), as prescribed by the hypothesis.
As explicated by Gaifman and Snir [42], the infinitely long sample sequences in
this set are often called random.15

Second, we want to distinguish between the above applications of Bayes’
theorem and applications of what is often called Bayes’ rule:

Pd(Hj) = P (Hj |d). (21)

The rule is an epistemological principle, relating two different probability func-
tions that pertain to different epistemic states of an agent, at different points
in time. Bayes’ theorem, by contrast, is a mathematical fact. It puts a con-
straint on a probability assignment over an algebra, much like the proof theory
of a logic sets constraints on truth valuations over an algebra. In the present
section we will concentrate fully on the latter, because we are not considering
an explicitly epistemic application of Bayesian inference.

6.2 Representation

The derivation of the posterior P (Hj |d) from the prior P (Hj) and the likelihoods
P (d|Hj) can be represented straightforwardly in Schema (1). Abbreviating the
likelihoods as P (d|Hj) = θj(d), we can write:

∀j ≤ n : HP (Hj)
j ∧ (d|Hj)θj(d) |= (Hj |d)P (Hj |d). (22)

In words, the schema combines probabilistic premises, namely the priors and
likelihoods of hypotheses, to arrive at probabilistic conclusions, namely a con-
ditional posterior over the hypotheses. Note that all arguments in Schema (22)
are at bottom restrictions to a class of probability assignments, or models for
short. Hence the inference of Schema (22) follows quite naturally from the stan-
dard semantics presented in §2: the probabilistic conclusions are drawn solely
on the basis of the axioms of probability, which serve as derivation rules.

15In a sense this particular set determines the observational content of the statistical hy-
potheses. In [118] it is argued that we can also identify Hj with that particular set in ΩD
that is given probability 1 by the probability assignment associated with Hj .
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6.2.1 Infinitely Many Hypotheses

The representation of Bayesian statistical inference in Schema (1) is not entirely
unproblematic. An important restriction is the number of statistical hypotheses
that can be considered in Schema (22).

Grouping Hypotheses. Many statistical applications do not employ a finite
number of hypotheses Hj , but a continuum of hypotheses Hθ. Now the math-
ematics of this is quite unproblematic: we collect the infinity of hypotheses in
a space with a metric, θ ∈ Θ, over which we define a probability distribution
P (θ)dθ and a likelihood function P (d|Hθ) = θ(d). In Schema (22) we can write
this down as

∀θ : HP (θ)dθ
θ , (d|Hθ)θ(d) |= (Hθ|d)P (θ|d)dθ. (23)

However, when cast in terms of the schema like that, the inference involves an
uncountable infinity of premises and conclusions, which means that we must
assume an unusually rich logical language.

One reaction to this is to bite the bullet and define a logical language of that
size.16 But if framing the statistical inferences in a logical schema necessitates
the use of such heavy material, we may ask whether the frame is not a bit
too heavy for the picture we are trying to present. Both for conceptual and
computational reasons, we will not develop the idea of directly employing a
continuum of hypotheses with a density-valued probability assignment over it.
Instead we may again employ a finite number n of statistical hypotheses Hj ,
each of which is composed of a set of hypotheses Hθ, for example according to
Hj = {Hθ : θ ∈ [ j−1

n , jn )}, with the interval closed on both sides for j = n.
Choosing θj = 2j−1

2n we can then approximate the continuous model arbitrarily
close by increasing n.

De Finetti’s Represenation. Another possible reaction to the uncountable
infinity involved in using statistical hypotheses is to translate the schema with
statistical hypotheses into something more manageable. In particular, we will
have to restrict the statistical inferences to a specific class. First, we say that
the data consist of assignments to binary propositional variables Di, denoted
de = d

e(1)
1 · · · de(m)

m . Further, we restrict attention to statistical hypotheses that
fix binomial distributions for the data, meaning that separate assignments de(i)i

are associated with independent fixed chances: P (d1
m+1|de, hθ) = θ ∈ [0, 1].

Finally, for convenience, we focus on specific predictions P (de
′ |de), in which

e′ is a vector of length m′ > m. These predictions can be derived from the
posterior probability assignments P (Hθ|de) and the likelihoods θ(de

′
) for de

′
by

the law of total probability. These predictions fit the following schema:

∀θ : HP (Hθ)
θ ∧ (de|Hθ)θ(d

e) ∧ (de
′ |Hθ)θ(d

e′ ) |= (de
′ |de)P (de

′ |de), (24)

where the likelihoods of Hθ for de is the product of the likelihoods of the separate
assignments de(i)i . With m1 =

∑
i e(i) we have θ(e) = θm1(1 − θ)m−m1 . Note,

however, that this schema has infinitely many premises.
16If we define statistical hypotheses in terms of sets of infinite sequences of observations,

as suggested in Footnote 15, then it seems that we can employ a somewhat smaller logical
language, which only involves a countable infinity of premises. But it leads us too far from
the main line of this section to make this precise.

47



As de Finetti [27] shows, we can represent any statistical inference of (24)
in terms of probability assignments over finitely many samples. The premises
in (24) can be replaced by another set of premises, which do not mention the
hypotheses Hθ, but instead refer to the so-called exchangeability of the proba-
bility P for samples de and de

′
. An exchangeable probability of the sample de

is invariant under permutations of the assignments e:

π(〈e(1), . . . e(i), . . . , e(m)〉) = 〈e(i), . . . e(1), . . . , e(m)〉

for any i. The new inference then becomes

∀π :
(
dπ(e′)

)P (e′)

|=
(
de
′ |de
)P (de

′ |de)
. (25)

where π(e′) refers to any permutation of the elements in the vector e′. The
salient point is that we can infer the very same predictions P (de

′ |de) that were
determined in (24) from a probability assignment for which the samples de

′
and

any order permutation of the data dπ(e′) are equally probable.
This entails the restriction on the set of probability assignments induced by

the set of premises {HP (θ)
θ , (de ∩Hθ)θ(d

e), (de
′ ∩Hθ)θ(d

e′ )} is exactly the same
as the restriction induced by the premises in (25). But this latter restriction
is set in strictly finite terms: since the data is finite, there are only finitely
many permutations of the data elements. The representation theorem of de
Finetti thus allows us to dispose of the infinity of premises that is involved in
the standard Bayesian statistical inference.

Carnapian Inductive Logic. Carnap [12, 14], Kuipers [80], and more re-
cently Paris and co-workers ([109, 108] and further references therein) consider
special cases of Schema (25) in what has become known as inductive logic. The
general idea of inductive logic is that invariances under the permutations π of
Schema (25) can be motivated by independent rationality criteria or principles
of logic. The probabilistic conclusions, generally predictions P (de

′ |de), thus
follow analytically.

A well-known inductive logic is given by the so-called continuum of inductive
methods. Assuming invariance under order permutation π as explicated in the
foregoing, and the further invariance under permutations of the values,

π(〈e(1), . . . e(i), . . . , e(m)〉) = 〈1− e(1), . . . 1− e(i), . . . , 1− e(m)〉,

we can derive the following predictions,

P (d1
m+1|de) =

m1 + λ
2

m+ λ
, (26)

wherem1 is as before and λ is a free parameter. With de Finetti’s representation,
we can also capture these predictions in Schema (24). The value of λ is then
determined by the distribution P (Hθ)dθ.17

17In particular, depending on the value of λ we must adopt a specific symmetric Dirichlet
distribution. See Festa [35].
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6.2.2 Interval-Valued Priors and Posteriors

Until now we have focused on sets of probability assignments that can be defined
by restrictions in terms of sharp probability assignments. But we may also rep-
resent restrictions in terms of intervals of probability assignments. We can use
this to represent a wider class of Bayesian statistical inferences in Schema (1).

Walley [99] discusses interval restrictions in the context of the above multi-
nomial hypotheses and their associated Carnapian predictions. As said, a sharp
distribution over multinomial hypotheses leads to an exchangeable prediction
rule. Walley points out that we can also allow for interval-valued assignments to
statistical hypotheses, and that such valuations can be dealt with adequately by
considering a class of prior distributions over the statistical hypotheses instead
of a single and sharp-valued prior distribution. These interval-valued assign-
ments are useful in studying the sensitivity of statistical results to the prior
probability that is chosen.

Furthermore, classes of prior distributions are associated with ranges of pre-
diction rules. As Skyrms [130] and Festa [36] show, we can use such ranges of
rules to constitute so-called hyper-Carnapian prediction rules: each of the the
prediction rules reacts to the incoming sample separately, but each prediction
rule is also assigned a probability, and the probability assignment over the rules
is updated according to the data as well. The resulting prediction rules have
quite interesting properties. Most notably, they can be used for deriving pre-
dictions that incorporate analogical predictions. However, it is not easy, nor is
it in our opinion very insightful, to represent the higher-order probability as-
signments over Carnapian rules in terms of the scheme of Schema (1). In this
paper we will therefore not study the hyper-Carnapian prediction rules.

6.3 Interpretation

We can interpret Schema (1) straightforwardly as a Bayesian statistical infer-
ence, as long as the inference concerns probability assignments over a sample
space and a model, ΩD × ΩH . One type of premise concerns the data and
the statistical model: we restrict ourselves to those probability assignments for
which the likelihoods of the hypotheses on the data, P (D|Hj), have specific val-
ues. The other premise is the prior probability assignment: we restrict the set
of probability assignments to those for which the marginal probability over hy-
potheses P (Hj) is equal to specific values. From these two restrictions and the
assignment d to the data variable D we can derive, according to the progicnet
programme, a further restriction on the posterior probability P (Hj |d).

6.3.1 Interpretation of Probabilities

Bayesian statistics is very often associateed with the so-called subjective inter-
pretation of probability. Thus far we have not determined the interpretation
of the probability assignments featuring in the inference. We want to briefly
comment on the issue of interpreting probability here.

First, as probabilistic logicians we are not necessarily tied to a specific inter-
pretation of the probability functions, just like classical deductive logicians are
not necessarily tied to Tarski’s or some other truth definition as an interpreta-
tion of the truth values in their inferential schemes. This is fortunate, because
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the debate on interpretations of probability is very complicated, and it easily
muddles the discussion on probabilistic inference, especially Bayesian inference.
On the whole, our present concerns are not with these interpretative issues, but
with the logic and its formal semantics.

If we are interpreting probabilities, we should distinguish between the prob-
ability assigned to statistical hypotheses Hj and to samples or data d. With
regard to the former, note that the schema concerns statistical hypotheses in
two ways: on the one hand the hypotheses are expressions in the language, on
the other hand they determine a probability assignment over the language. Now
in a standard Bayesian account, probability assignments over hypotheses seem
most naturally understood as epistemic, meaning that they pertain to degrees
of belief. Note that this does not yet mean that probabilities of hypotheses
are subjective, because we may also try to determine the epistemic probability
assignment by means of objective criteria.

As for the probability assigned to samples, the likelihoods, we may give it
either a physical interpretation, meaning that the probabilities refer to aspects
of the physical world, or an epistemic interpretation. Arguably, the probability
assignments as prescribed by the hypotheses are best interpreted as a physical
notion, because hypotheses are statements about the world. At the same time
the likelihoods of the hypotheses seem best interpreted as epistemic, because
they fulfill an evidential role.

6.3.2 Bayesian confidence intervals

There is another, rather natural interpretation of interval probabilities in the
context of Bayesian statistical inference. We discuss it briefly here to clarify its
relation to Schema (1), and to explain why we will not pursue this interpretation
in what follows.

Recall that the continuum of hypotheses Hθ concerns probability assign-
ments over data D via the parameter θ, and that we have defined probability
density functions over this parameter, P (Hθ|D). From these density functions
we can define Bayesian confidence intervals, or credence intervals, for the val-
ues of θ. Each interval θ ∈ [l, u] is associated with a posterior probability, or
credence,

P (h[l,u]|D) =
∫ u

l

P (Hθ|D)dθ.

Now we may fix u and l such that∫ l

0

P (Hθ|D)dθ =
∫ 1

u

P (Hθ|D)dθ = 2.5%.

In that case we have P (h[l,u]|D) = 0.95, and we can then say that we are 95%
certain that the real value of θ lies within the interval [l, u]. From the knowledge
of a sharp-valued probability assignment over θ, we might even construct an
interval-valued probability assignments for θ, written θ ∈ [l, u].

Credence intervals might lead us to reconsider the representation of the
Bayesian statistical inferences in Scheme (22), and bring Bayesian statistical
inference closer to classical statistical inference. Assuming a uniform prior
probability density P (Hθ) = 1, the corresponding interval-valued assignment
is θ ∈ [.025, .975]. But after incorporating a specific sample d, we obtain the
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posterior density function P (Hθ|d). It may so happen that the corresponding
interval-valued assignment is θ ∈ [.08, .13], meaning that conditional on obtain-
ing the data d, the 95% credence interval shrinks. The question arises whether
we can somehow interpret the interval-valued probabilities in Schema (1) as
such credence intervals.

Unfortunately, we cannot. The inferences of interval-valued probabilities in
Schema (1), when interpreted as credence intervals, are elliptic, that is, they
omit certain premises. More precisely, the fact that θ ∈ [.025, .975] does not
fix the detailed shape of the prior probability density P (Hθ). But we need this
detailed shape to arrive at the specific conditional credence interval θ ∈ [.08, .13].
It is not possible to rely just on the rules of inference of Schema (1) for these
credence intervals. An interpretation of Schema (1) in terms of the credence
intervals deriving from Bayesian statistical inference is therefore not possible.

7 Objective Bayesianism

7.1 Background

According to objective Bayesian epistemology, an agent’s rational degrees of
belief are determined by the extent and limitations of the propositions E that she
takes for granted [153]. E is called the agent’s epistemic background , or evidence,
and includes her background knowledge, observations, theoretical assumptions
etc.—everything that is not under question in her current operating context.
The agent’s epistemic background determines the strengths of the her beliefs
in two ways. First, an agent’s degrees of belief should be compatible with this
background: e.g., if she grants ϕ, she should fully believe it; if her evidence
consists just of a narrowest reference-class frequency pertinent to ϕ then she
should believe it to the extent of that frequency; if her granted physical theory
determines the chance of ϕ then she should believe it to the extent of that
chance; if her granted physical theory says that there is a symmetry between
ϕ and ϕ′ which results in them having the same chance then she should award
them the same degree of belief.18 Second, her degrees of belief should otherwise
be as equivocal as possible—she should not believe a proposition to a greater
or lesser extent than the most equivocal degree of belief that is compatible with
her epistemic background.

7.1.1 Determining Objective Bayesian Degrees of Belief

Importantly, objective Bayesianism—in common with other versions of Bayesian
epistemology—holds that the agent’s rational degrees of belief are representable
by a probability function; thus her degree of belief in ϕ can be measured by
a single number in the unit interval. This position can be motivated by bet-
ting considerations [116? ] or by derivation from intuitive principles [17]. Many
Bayesians also agree with the objective Bayesian tenet that the agent’s probabil-

18For an agent’s degrees of belief to be rational, it is sufficient that they be rationally
determined from her background E, that this background consists of propositions that the
agent takes for granted, and that the agent is rational to take these propositions for granted
given her purposes at the time. The truth of the propositions in E is not required. Hence the
propositions in E need count as knowledge in the philosophical sense that presupposes truth.
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ity function should satisfy constraints imposed by E .19 The motivation behind
this tenet is that an agent’s degrees of belief will be used as a basis for inference
and decision; success in these tasks require calibration with physical probability.

What separates objective Bayesianism from other varieties of Bayesianism is
its further insistence on equivocal degrees of belief: an agent’s probability func-
tion should be a probability function, from those satisfying constraints imposed
by background knowledge, that is as non-extreme as possible. This is because
extreme degrees of belief tend to trigger risky actions while equivocal degrees
of belief are associated with less risk, and it is prudent only to take on risk to
the minimum extent warranted by available evidence [150].

The general recipe for objective Bayesian assignment of belief proceeds as
follows. The epistemic background E determines a set E of probability functions
which are compatible with E . The agent should then have degrees of belief that
are representable by a probability function PE which is in E and as close as
possible to an equivocator , a probability function P= that is maximally equivocal
on the domain. To flesh out this procedure, we need to say a bit more about how
E is determined by E , and more precisely characterise the notions of equivocator
and closeness to the equivocator.

7.1.2 Constraints on Degrees of Belief

First we shall say a few words about how E is determined by E . The idea here
is that E imposes constraints χ that an agent’s degrees of belief should satisfy.
This set of constraints can be used to characterise E, the set of probability
functions that are compatible with E .

Definition 7.1 (Directly Transferred Constraints) The set of directly trans-
ferred constraints is the smallest set χ such that:

• if ϕ is in E then P (ϕ) = 1 is in χ,

• if chance(ϕ) ∈ X is in E then P (ϕ) ∈ X is in χ (more generally, substitute
P for chance when transferring constraints to χ),

• if freqU (V ) ' x (which says ‘the frequency of V in reference class U is
approximately x’) is in E and V t↔ ϕ is in E and Ut ∈ E and there is no
narrower U ′ for which this holds, then P (ϕ) = x is in χ (more generally,
let known narrowest-reference-class frequencies transfer to constraints on
P in χ).20

Let P be the set of all probability functions and let Pχ be the set of probability
functions that satisfy χ, the directly transferred constraints. There are two
reasons why we can’t just set E = Pχ. First, it is sometimes unreasonable to
require that degrees of belief should satisfy the same constraints as physical
probabilities (frequencies, chances). For example, suppose the agent knows just
that the truth of ϕ has already been decided (ϕ asserts the occurrence of an event

19Some Bayesians restrict this to the case in which the knowledge in a takes the form of
sentences in the domain of the probability function (in which case the constraints are usually
just that these sentences should be fully believed). The objective Bayesian does not impose
this restriction.

20Depending on the closeness of the approximation freqU (V ) ' x (e.g., depending on the
sample size) one might relax this constraint to P (ϕ) = [x− δ, x+ δ] for some suitable δ.
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in the past, say). This implies that (chance(ϕ) = 0)∨(chance(ϕ) = 1). But this
does not impose the constraint (PE(ϕ) = 0) ∨ (PE(ϕ) = 1). Arguably, it does
not impose any constraint at all, in which case the objective Bayesian method
will yield PE(ϕ) = 1/2. In general, objective Bayesianism’s epistemological
basis and its advocacy of non-extreme probabilities motivate taking the convex
closure of directly transferred constraints, [Pχ] [147, §5.3]; [96, §9].21

The second reason why we can’t just set E = Pχ is that Pχ might be empty,
i.e., the constraints in χ might be inconsistent (perhaps because there is more
than one narrowest reference class frequency pertinent to ϕ). Then a consis-
tency maintenance procedure needs to be invoked. The simplest such procedure
involves requiring that PE be compatible with some maximal consistent subset
of χ. Let P∗χ =

⋃
χ∗ Pχ∗ where χ∗ ranges over the maximal consistent subsets

of χ. Then,

Definition 7.2 (Compatible) The set E of probability functions that are com-
patible with E is defined by E df= [P∗χ].

Thus the probability functions compatible with the agent’s epistemic back-
ground E are those that are in the convex closure of the set of probability func-
tions that satisfy constraints directly transferred from E , if these constraints are
consistent, or in the convex closure of maximal consistent subsets of the directly
transferred constraints if not.

Next we turn to the notions of equivocator and closeness to the equivocator.
These need to be defined relative to a particular domain. We will consider two
kinds of domain here: a propositional language and a predicate language.

7.1.3 Propositional Languages

The simplest case is that in which the domain is a finite propositional language
built on assignments a1, . . . , an to propositional variables. On this domain the
natural notion of distance between two probability functions is the cross entropy
distance d(P,Q) =

∑
α P (α) logP (α)/Q(α), where the α range over the atomic

states. Note that 0 log 0 is taken to be 0. The natural equivocator is defined
by P=(α) = 1/2n; it equivocates between atomic states ae11 ∧ · · · ∧ aenn (where
e1, . . . , en ∈ {0, 1}). For a set P′ of probability functions, let ↓↑P′ be the subset
of P′ that contains those probability functions closest to the equivocator, ↓↑P′

df=
{P ∈ P′ : d(P, P=) is minimised}. The objective Bayesian recipe is then to
choose PE ∈ ↓↑E. Note that since E is closed and convex and d is a strictly convex
function, there is a unique such PE . Now minimising distance with respect to the
equivocator is equivalent to maximising entropy H(P ) = −∑α P (α) logP (α).
Hence on this finite domain we have the Maximum Entropy Principle:

Maximum Entropy Principle: On a propositional language the agent’s de-
grees of belief should be representable by a probability function PE , from
all those compatible with E , that has maximum entropy [69].

21Note that objective Bayesianism admits structural as well as directly transferred con-
straints: structural constraints are imposed by qualitative evidence, e.g., evidence of causal,
ontological, logical, or hierarchical relationships. As explained in [147], structural constraints
take the form of equality constraints. Since structural constraints are not required in the
context of probabilistic logic, we shall focus solely on directly transferred constraints in this
paper.
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7.1.4 Predicate Languages

If the domain is a predicate language then the picture is similar, but slightly
more complicated.22 In this case we create an ordering a1, a2, . . . of the atomic
sentences—sentences of the form Ut where U is a predicate or relation and t is a
tuple of constants of corresponding arity—ensuring that those atomic sentences
that only involve constant symbols from t1, . . . , tm occur in the ordering before
those that involve tn, for m < n. We then use as the measure of distance

dn(P,Q) df=
1∑

e1,...,en=0

P (ae11 ∧ · · · ∧ aenn ) log
P (ae11 ∧ · · · ∧ aenn )
Q(ae11 ∧ · · · ∧ aenn )

.

Here, as before, a1
i signifies ai and a0

i signifies ¬ai. As before we take 0 log 0 to
be 0. We will not need to consider the case x log x/0 and will simply assume in
what follows that Q is never zero.

On a predicate language the equivocator is defined by

P=(ae11 ∧ · · · ∧ aenn ) df= 1/2n,

for all n. Thus

dn(P, P=) =
1∑

e1,...,en=0

P (ae11 ∧ · · · ∧ aenn ) log [2nP (ae11 ∧ · · · ∧ aenn )] .

Letting d(P,Q) = limn→∞ dn(P,Q) ∈ [0,∞], one might try, as before, to
choose PE ∈ {P ∈ E : d(P, P=) is minimised}. But as it stands this does not
adequately explicate the concept of closeness to the equivocator, because in
the case of a predicate language there are probability functions P,Q such that
although one is intuitively closer to the equivocator than the other, d(P, P=) =
d(Q,P=). Suppose for example that E imposes the constraints P (an|ae11 ∧ · · · ∧
a
en−1
n−1 ) = 1 for all n≥ 2. Thus only P (a1) is unconstrained. Then Pχ is non-

empty, closed and convex, so E = Pχ, but d(P, P=) = ∞ for all P ∈ E. Yet
intuitively there is a unique function in E that is closest to the equivocator,
namely the function that sets P (a1) = 1/2 and P (an|ae11 ∧ · · · ∧ aen−1

n−1 ) = 1 for
all n≥2. Accordingly we introduce the following definition.

Definition 7.3 (Closer) For probability functions P,Q,R defined on a predi-
cate language, we say P is closer than Q to R iff there is some N such that for
all n≥N , dn(P,R) < dn(Q,R).

Note that in the above example, the function that is intuitively closer to the
equivocator is indeed deemed to be closer (N can be taken to be 1 in this case).
Here is another example:

Example 7.4 Suppose E = {P ∈ P : P (∀xUx) = c} for some fixed c ∈
[0, 1]. (It is usual to understand a constraint of the form P (∀xUx) = c as

22Note that the approach advocated here is very different to that of [149, 152]. The merit
of this new approach is that it permits a uniform treatment of propositional and predicate
languages. We assume, as is normal with discussions of probabilities over predicate languages,
that each element of the domain is picked out by some constant symbol. See [109] on this
point.
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limn→∞ P (Ut1 ∧ · · · ∧ Utn) = c).23 We have that d(P, P=) = ∞ for all P ∈ E.
Define P by

P (Ut1) =
c+ 1

2

P (Uti+1|Ute11 ∧ · · · ∧ Uteii ) =

{
(2i+1−1)c+1
(2i+1−2)c+2 : e1 = · · · = en = 1

1
2 : otherwise

Then P is the member of E that is closest to the equivocator.

The objective Bayesian protocol is then to seek a probability function that
is closest to the equivocator in the sense of Definition 7.3. For a set P′ of
probability functions, let ↓↑P′ be those members of P′ that are closest to the
equivocator P= in the sense of Definition 7.3. Then objective Bayesianism
advocates choosing PE ∈ ↓↑E, as in the case of a propositional language. (While
in the propositional case PE is uniquely determined, this is not necessarily so
with a predicate language.)

The following objection to the above choice of equivocator crops up from
time to time in the literature [30, §4]. Suppose the agent has no background
knowledge E ; then she will set her degrees of belief according to the equivocator.
In particular P=(Br101 | Br1 ∧ · · · ∧ Br100) = P=(Br101) = 1/2. Thus if she
observes a hundred ravens and finds them all to be black then her degree of
belief that raven 101 will be black is the same as if she had observed no ravens
at all. Learning from experience becomes impossible with this equivocator.

This objection fails because P=(Br101 | Br1∧· · ·∧Br100) does not represent
the degree to which the agent would believe that raven 101 is black were she
to observed a hundred ravens all black. Suppose the agent’s initial epistemic
background E = ∅; then indeed PE = P=. Suppose then the agent were to
observe a hundred ravens and find them all black. Her new epistemic background
is E ′ = {Br1 ∧ · · · ∧ Br100}. Her degree of belief that raven 101 is black given
this evidence is PE′(Br101). This is obtained by determining the P ∈ PE′ that
is closest to P=. To determine PE′ we need to isolate the constraints imposed
by E ′. Clearly E ′ imposes the constraint P (Br1 ∧ · · · ∧ Br100) = 1, but the
evidence also implies that the relative frequency of ravens being black is near 1,
so by Definition 7.1 also constrains P (Bri) to be near 1 for unobserved ri. Now
PE′ must satisfy these constraints so PE′(Br101) will end up being near 1 (which
seems reasonable given the agent’s lack of other knowledge). Thus the agent will
learn from experience after all. More generally, the objective Bayesian update
on new evidence e does not always agree with the corresponding conditional
probability PE(·|e). One of the conditions for agreement is that e be simple
with respect to previous knowledge E , i.e., that the learning of e should only
impose the constraint P (e) = 1. In this case, e contains frequency information
and so is not simple. See [151] for a fuller discussion of the differences between
objective Bayesian updating and Bayesian conditionalisation.

7.1.5 Objective Bayesianism in Perspective

We see, then, that objective Bayesianism requires that the strengths of an
agent’s beliefs be representable by a probability function, from all those that are

23See [109] for instance. Note that this construal requires the assumption that each member
of the domain is picked out by some constant symbol in the language.
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compatible with the propositions that she takes for granted, which is closest to
a suitable equivocator on the domain. One can take much the same approach
on both predicate and propositional languages.

Jakob Bernoulli may be have been the first to advocate all three of the
central tenets of objective Bayesianism, namely that degrees of belief should
be probabilistic, constrained by empirical evidence, and otherwise equivocal [6,
Part IV]; [147, §5.2]. [69] provided the maximum-entropy foundations which
work well on finite domains; how to handle uncountable domains remains a
question of some controversy [153, §19]. Uncountable domains are less central
to logic and to the purposes of this paper, and so will not be covered here. [107,
§4] applied objective Bayesianism to probabilistic logic.

Objective Bayesianism as outlined here differs in an important sense from
Bayesian statistical inference described in §6: here all probabilities are first-
order, attaching to sentences of a logical language, while Bayesian statistical
inference focuses on second-order probabilities, i.e., probabilities of probabilities.
Objective Bayesian statistical inference, which appeals to equivocal second-order
probabilities, is an active research area in statistics. Objective Bayesianism
differs from probabilistic argumentation (§3) inasmuch as it is concerned with
the probability that a conclusion is true, rather than the probability that the
conclusion’s truth is forced by the truth of the premises. Evidential probability
(§4) can be viewed as a formalism for determining E, the set of probability
functions that are compatible with the agent’s epistemic background; objective
Bayesianism goes beyond evidential probability in that it advocates equivocation
as well as calibration with statistical evidence [144].

7.2 Representation

The objective Bayesian faces the following kind of question: given background
knowledge E , to what extent should you believe a proposition ψ of interest?
It is not hard to see how this might be phrased in terms of the Fundamen-
tal Question of Probabilistic Logic, Equation 1. Suppose for instance that
E = {ϕ1, chance(ϕ2) ∈ [0.6, 0.8], freqU (V ) ' 0.9, V t ↔ ϕ3, Ut}.24 Then the
objective Bayesian question can be phrased in the language of Equation 1 as
follows:

ϕ1
1, ϕ

[0.6,0.8]
2 , ϕ0.9

3 |≈ ψ?

Thus objective Bayesianism fits neatly into the framework of this paper.

7.3 Interpretation

Conversely, a question of the form of Equation 1, ϕX1
1 , ϕX2

2 , . . . , ϕXnn |≈ ψ?, can
be given an objective Bayesian interpretation. Simply take the premisses on
the left-hand side to encapsulate constraints on P that are directly transferred
from an agent’s background knowledge (i.e., constraints in the set χ introduced
above). Then the set Y to attach to ψ is the set Y = {PE(ψ) : PE is a function
from [P∗χ] that is closest to the equivocator}. Assuming a finite domain, Y is a
singleton.

24To reiterate, while the propositions ϕ1, ϕ2, ϕ3 are in the domain of the agent’s probability
function, expressions of the form chance(ϕ2) ∈ [0.6, 0.8], freqU (V ) ' 0.9, V t↔ ϕ3, Ut are not
assumed to be in this domain.
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Thus objective Bayesianism can be used to provide semantics for probabilis-
tic logic. Let χ = {ϕX1

1 , ϕX2
2 , . . . , ϕXnn } and let ν be ψY . Then χ |≈ ν if and

only if P ∈ ↓↑[P∗χ] implies P (ψ) ∈ Y , i.e., if and only if ↓↑[P∗χ] ⊆ Pν .

Example 7.5 Consider the question ∀xUx3/5 |≈ Ut?. Objective Bayesian epis-
temology interprets the expression on the left-hand side as the constraint χ im-
posed on an agent’s degrees of belief by her evidence E; this constraint is con-
sistent and determines a closed convex set, so E = [P∗χ] = Pχ = {P ∈ P :
P (∀xUx) = 3/5}. There is one function P in E that is closest to the equivo-
cator, as described in Example 7.4. This function gives P (Ut) = 4/5 for each
constant t. Hence the answer to the question is 4/5.

Note that the monotonicity property of §1.2 fails, so entailment is not decom-
posable under the objective Bayesian semantics. Nevertheless, this notion of
entailment still satisfies a number of interesting properties. In order to charac-
terise these properties we shall need to appeal to some notions that are common
in the literature on nonmonotonic logics—see, e.g., [? ]; [100, §3.2] and [63] for
background. Construct an (uncountable) language L∗ by taking statements of
the form ϕX as atomic propositions, where ϕ is a sentence of a propositional
or predicate language L and X is a set of probabilities. L∗ can be thought
of as the language of the Fundamental Question, Equation 1. A probability
function P can then be construed as a valuation on L∗. Define a decomposable
entailment relation |= by P |= µ iff P ∈ Pµ for sentence µ of L∗, where µ is
composed from statements of the form ϕX by the usual logical operators. In
particular, if µ is of the form ϕX , then P |= µ iff P (ϕ) ∈ X. For probability
functions P and Q, define P ≺ Q iff P is closer to the equivocator than Q.
Then (P,≺, |=) is a preferential model : P is a set of valuations on L∗, ≺ is
an irreflexive, transitive relation over P, and |= is a decomposable entailment
relation. Moreover, this preferential model is smooth: if P |= µ then either P
is minimal with respect to ≺ in Pµ or there is a Q ≺ P in Pµ that is minimal.
Hence this model determines a preferential consequence relation |∼ as follows:
µ |∼ ν iff P satisfies ν for every P ∈ P that is minimal among those probability
functions that satisfy µ. We will be particularly interested in the case in which
sentence µ of L∗ is consistent and where all sets X occurring in µ are closed
intervals. In that case Pµ = P∗µ = [P∗µ] = E, the set of probability functions that
are compatible with µ. Call µ regular if it satisfies this property. Wherever µ
and ν are regular sentences, |∼ will agree with |≈, where the latter entailment
relation is extended to L∗ in the obvious way. Consequently on regular sen-
tences |≈ will satisfy the properties of preferential consequence relations, often
called system-P properties—see, e.g., [? ]:

Proposition 7.6 (Properties of Entailment) Let |= denote entailment in
classical logic and let ≡ denote classical logical equivalence. Whenever µ∧ξ, ν∧ξ
are regular sentences of L∗,
Right Weakening: if µ |≈ ν and ν |= ξ then µ |≈ ξ.

Left Classical Equivalence: if µ |≈ ν and µ ≡ ξ then ξ |≈ ν.

Cautious Monotony: if µ |≈ ν and µ |≈ ξ then µ ∧ ξ |≈ ν.

Premiss Disjunction: if µ |≈ ν and ξ |≈ ν then µ ∨ ξ |≈ ν.

57



Conclusion Conjunction: if µ |≈ ν and µ |≈ ξ then µ |≈ ν ∧ ξ.

The objective Bayesian semantics is sometimes preferred to the standard
semantics on conceptual grounds (semantics in terms of rational degrees of belief
is very natural, and objective Bayesianism provides a compelling account of
rational degree of belief) and sometimes on pragmatic grounds—that a single
probability rather than a set of probabilities attaches to the conclusion of the
fundamental question is computationally appealing and can simplify matters if
a decision must made on the basis of an answer to such a question [150, §11].

Part II

Probabilistic Networks

8 Credal and Bayesian Networks

In Part I we argued that the question of Schema (1), ϕX1
1 , . . . , ϕXnn |≈ ψ?, pro-

vides a unifying framework for probabilistic logic, into which several important
approaches to probabilistic inference slot. Now, in Part II, we turn to the prob-
lem of how one might answer this fundamental question.

We have seen that in many cases it suffices to restrict attention to convex sets
of probability functions, and even, in the case of objective Bayesianism, often a
single probability function. This restriction will be important in what follows,
since it will allow us to exploit the computational machinery of probabilistic
networks—in particular credal networks and Bayesian networks—to help us
answer the fundamental question.

The task, then, is to find an appropriate Y such that ϕX1
1 , . . . , ϕXnn |≈ ψY ,

where X1, . . . , Xn, Y are intervals of probabilities. Our strategy is to use the left
hand side, ϕX1

1 , . . . ϕXnn , to determine a probabilistic network on the domain.
This probabilistic network offers an efficient means of representing the proba-
bility functions that are models of the left hand side, and an efficient means
of drawing inferences from these probability functions. One can then use this
network to calculate Y , the range of probability values that models of the left
hand side attach to ψ.

In §8.1 we introduce credal and Bayesian networks and the different config-
urations of these networks that will be required in Part II of this paper. Then,
in §8.2, we develop some common machinery for drawing inferences from prob-
abilistic networks in order to answer our fundamental question. The remainder
of Part II will be devoted to exploring the variety of networks produced by
the different semantics of Part I. In each subsequent section we shall provide
one or more algorithms for constructing a probabilistic network that suits the
corresponding semantics. We will focus on explaining the basic steps of each
construction algorithm in broad terms. Space constraints prohibit detailed anal-
ysis and justification of these algorithms but further details are available in the
supporting references. In summary, then, the recipe of this paper is as follows:

• Representation: Formulate a question of the form of Schema (1).

• Interpretation: Decide upon appropriate semantics (Part I).
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• Network Construction: Construct a probabilistic network to represent
the models of the left-hand side of Schema (1) (subsequent sections of
Part II).

• Inference: Apply the common machinery of §8.2 to answer the question
posed in the first step.

This paper is by no means the first to advocate integrating probabilistic
logics and probabilistic networks [see, e.g., 114, 106, 68, 74, 117, 90, 91, 18].
Previous work has focussed on developing specific probabilistic logics that inte-
grate probabilistic networks into the representation scheme—i.e., into the logi-
cal syntax itself. Here, however, we adopt a quite different approach, by using
probabilistic networks as a calculus for probabilistic logic in general. Thus prob-
abilistic networks play a role here analogous to that of proof in classical logic:
they provide a means of answering the kind of question that the logic faces.

8.1 Kinds of Probabilistic Network

Suppose we have a finite propositional language LV with propositional variables
V = {A1, . . . , An} which may take values true or false. As outlined in §1.4, the
assignment Ai = true is denoted by a1

i or simply ai, while Ai = false is denoted
by a0

i or āi. A Bayesian network consists of a directed acyclic graph (DAG) on
V , together with the probability functions P (Ai|PARi) for each variable Ai ∈ V
conditional on its parents PARi ⊆ V in the graph. (Here P (aei |parei ) refers to
the probability of a particular assignment to variable Ai conditional on the prob-
ability of a particular assignment to its parents, while P (Ai|PARi) refers to the
probability function itself—i.e., the function that maps assignments to Ai and
its parents to numbers in the unit interval.) An example of a Bayesian network

A1 A2 A3

Figure 5: Directed acyclic graph in a Bayesian network.

is provided by the graph of Figure 5 together with corresponding conditional
probability functions specified by:

P (a1) = 0.1, P (a2|a1) = 0.9, P (a3|a2) = 0.4,
P (a2|ā1) = 0.3, P (a3|ā2) = 0.2.

The joint probability function P over LV is assumed to satisfy the Markov
condition: each variable is probabilistically independent of it’s non-descendants
ND i conditional on its parents PARi, written Ai ⊥⊥ ND i|PARi. Under this as-
sumption, a Bayesian network suffices to determine the joint probability function
under the identity

P (A1, . . . , An) =
n∏
i=1

P (Ai|PARi). (27)

In the above example,

P (a1ā2a3) = P (a3|ā2)P (ā2|a1)P (a1) = 0.2× (1− 0.9)× 0.1 = 0.002.
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A credal network consists of a directed acyclic graph on V = {A1, . . . , An}
together with closed convex sets K(Ai|PARi) of conditional probability func-
tions P (Ai|PARi), for each variable Ai ∈ V conditional on its parents in the
graph. As previously mentioned, a closed convex set of probability functions
is called a credal set . (See §2.1.4 for more on convexity.) As an example of a
credal network consider Figure 5 together with the local conditional distribu-
tions constrained by

P (a1) ∈ [0.1, 0.2], P (a2|a1) = 0.9, P (a3|a2) ∈ [0.4, 1],
P (a2|ā1) ∈ [0.3, 0.4], P (a3|ā2) = 0.2.

8.1.1 Extensions

In a credal network, further independence assumptions are made in order to
determine a joint credal set K(A1, . . . , An) over the whole domain from the
given conditional credal sets. The credal network framework admits a number
of choices as to which assumptions to make here.

Natural Extension. One choice is to make no independence assumptions at
all. Then we have what in [19] is called a natural extension under no
constraints, i.e., the joint credal set

K(A1, . . . , An) = {P : P (Ai|PARi) ∈ K(Ai|PARi)},
whose elements all comply with the probabilistic constraints of the given
conditional credal sets.

Strong Extension. Another possible choice is to take the convex hull of the
extremal points defined by the local conditional credal sets and the con-
ditional independencies determined from the graph via the Markov con-
dition. The resulting joint credal set, is then called the strong extension
of the credal network. It is noteworthy that not all probability assign-
ments in the strong extension need comply with the independence rela-
tions suggested by the graph—only the extremal points need satisfy these
contraints. This is further explained in §8.1.2 below.

Complete Extension. Yet another choice is to assume that each probability
function in the joint credal set satisfies the Markov condition with respect
to the given graph. In that case the credal network can be thought of as
the set of Bayesian networks based on the given DAG whose conditional
probabilities satisfy the constraints imposed by the conditional credal sets,
P (Ai|PARi) ∈ K(Ai|PARi). We call the resulting credal set the complete
extension of the credal network.25

Note that the natural extension coincides with the strong (or complete) exten-
sion with respect to a complete graph (a DAG in which each pair of variables
is linked by an arrow, and which therefore implies no independencies via the
Markov condition). Hence it suffices to consider strong and complete extensions,
and we will not appeal to the concept of natural extension in what follows. (Our

25A credal set is a closed convex set of probability functions. Convexity, however, is relative
to coordinate system; the complete extension is convex with respect to the network-structure
coordinate system. See §8.1.2 for further explanation.
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discussion of the standard semantics and Bayesian statistical inference appeals
to complete extensions, while strong extensions apply to objective Bayesian-
ism.) Note too that the extremal points are independent of extension (i.e., the
extremal points of any one extension coincide with those of any other exten-
sion). In fact the inferences drawn from a credal network just depend on these
extremal points. Our common inferential machinery will handle the extremal
points and so may be applied to any of the above extensions.

8.1.2 Extensions and Coordinates

The notion of extension is tied up with the notion of convexity. In §2.1.4 we
noted that whether or not a set of probability functions is convex depends on
the coordinate system used to specify the probability functions. In particular,
depending on the choice of the coordinates for the space of probability functions,
the strong extension of a network may be identical to the complete extension.
We illustrate this with an example.

Example 8.1 Consider the credal network on variables A and B defined by the
empty graph (no arrow between A and B) and local credal sets P (a) ∈ [0.3, 0.7],
P (b) ∈ [0, 0.5]. This credal network defines four extremal points, each repre-
sentable by a Bayesian network on the empty graph (implying via the Markov
condition that A ⊥⊥ B): one has local distributions P (a) = 0.3, P (b) = 0, a
second has P (a) = 0.7, P (b) = 0, the third P (a) = 0.3, P (b) = 0.5 and the
fourth P (a) = 0.7, P (b) = 0.5. The strong extension of this credal network is
simply the convex hull of these four extremal points.

But now the question arises as to how the convex hull in the above example is
defined. The convex hull of a set P of probability functions is the smallest set of
probability functions that contains P and is closed under convex combination.
A convex combination of functions P and Q is a function R such that z =
λx+ (1− λ)y for each coordinate z of R, where x and y are the corresponding
coordinates of P and Q respectively and λ ∈ [0, 1].

One possibility is to specify a full joint distribution over the four atomic
states a∧ b, a∧¬b, ¬a∧ b, and ¬a∧¬b, and take as coordinates x1 = P (a∧ b),
x2 = P (a∧¬b), x3 = P (¬a∧ b), and x4 = P (¬a∧¬b). We represent these four
mutually exclusive, exhaustive possibilities within a 3-dimensional unit simplex
in Figure 6. Here the points where A and B are not dependent are those on
the curved surface. The small quadilateral on the curved surface identifies the
points where A and B are independent from one another and satisfy the given
constraints on assignments.

This curved surface is also depicted on the left hand side of Figure 7. Note
that it is not the case that all points in the convex hull of the small quadrilateral
also lie on the curved surface: the dotted line on the left hand side of Figure 7
lies outside the surface. Hence probability functions within the strong extension
fail to satisfy the independence relation A ⊥⊥ B that is satisfied by the extremal
points.

One can depict the full distribution over four possibilities using different
coordinates. Now represent a probability function by coordinates α = P (a) =
1 − P (ā), β1 = P (b|a) = 1 − P (b̄|a), and β0 = P (b|ā) = 1 − P (b̄|ā). This
coordinate system is depicted by the cube on the right hand side of Figure 7.
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P (a ∧ b)

P (a ∧ ¬b)

P (¬a ∧ b)

P (¬a ∧ ¬b)

P (a) ∈ [0.3, 0.7]

P (b) ∈ [0, 0.5]

Figure 6: Atomic-state coordinates.

Here A and B are independent, A ⊥⊥ B, iff β0 = β1. This is a linear restriction
in the space of possible assignments to A and B—the diagonal plane in the
cube, which corresponds to the curved surface in the coordinate system on the
left hand side of Figure 7.

P (a ∧ b) P (a ∧ ¬b)

P (¬a ∧ b)

α
→

β1 →

β0→

⇒

Figure 7: Two different coordinate systems.

Again, the small quadrilateral represents the region satisfying the constraints
imposed by the local credal sets. In this case, the convex hull of the extremal
points of this region lies on the diagonal surface: all probability functions in
the strong extension satisfy the independence relation imposed by the graph in
the credal network, and hence the strong extension coincides with the complete
extension.

This shows that the strong extension can depend on the coordinate system
used to represent probability functions. Hence it is important when using a
strong extension to specify the coordinate system. In probabilistic logic it is
typical to use the former, atomic-state coordinate system (x1, x2, x3, x4). This
ensures that if the extremal points all satisfy a linear constraint of the form
P (ϕ) ∈ X then so will every member of the strong extension. (For example,
the objective Bayesian semantics of §7 appeals to the atomic-state coordinate
system in determining the convex closure of the probability function that satisfy
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constraints imposed by evidence.) On the other hand, the latter, network-
structure coordinate system (α, β0, β1) is often typical in discussions of causality,
where it is more important that the strong extension preserve independence
relations than linear constraints.

8.1.3 Parameterised Credal Networks

It is important to note that there are credal sets that cannot be represented by
a credal network of the above form.

Example 8.2 Consider the credal set that consists of all probability functions
on V = {A,B} that satisfy the constraints P (ab) = 0.3 and P (b|ā) = 0. This
implies P (a) ∈ [0.3, 1], but the possible values of P (b|a) depend on the particular
value x of P (a) in [0.3, 1], since P (b|a) = 0.3/x. While it is true that P (b|a) ∈
[0.3, 1], the value of P (b|a) can not be chosen independently of that of P (a). So
the credal network defined on the graph with an arrow from A to B that has local
credal sets P (a) ∈ [0.3, 1], P (b|a) ∈ [0.3, 1], and P (b|ā) = 0 does not represent
the joint credal set. Note that the graph is complete so the choice of extension
is irrelevant here.

To represent the credal set of the above example we need to appeal to what
we call a parameterised credal network . The graph is as before but now the
conditional credal sets involve a parameter: x := P (a) ∈ [0.3, 1], P (b|a) = 0.3/x,
and P (b|ā) = 0. By invoking the parameter x, one avoids the assumption that
the local credal sets operate independently as constraints on P . Parameterised
credal networks can be used to represent arbitrary credal sets.

8.2 Algorithms for Probabilistic Networks

There has been a tremendous amount of research directed at finding the most
efficient algorithms for inference in Bayesian and credal networks. Nearly all
cutting-edge algorithms for Bayesian networks use some sort of local computa-
tion techniques [77, 92, 129], which try to systematically bypass operations on
large state spaces. In the worst-case, these algorithms run in time and space
exponential to the network’s induced treewidth, which is an indicator of the
“density” of the available independence assumptions. Further improvements are
obtained by exploiting so-called context-specific independencies [7, 138]. These
techniques deal with local independence relations within (rather than between)
the given conditional probability tables.

In the case of credal networks, finding efficient inference algorithms is much
more challenging. There are some attempts to apply local computation tech-
niques to credal networks, but the problem remains unfeasible for most non-
trivial instances. Compared to Bayesian networks, the additional computational
complexity results from the potentially unbounded number of extremal points
needed to describe arbitrary credal sets, which can quickly undermine any ben-
efits of local computation. In fact, one can see inference in credal networks as
a global multilinear optimization problem on top of the given network struc-
ture [20], which is intractable on its own. Facing this inherent computational
complexity, exact inference methods are only exceptionally applicable to credal
networks, and this is the reason why most of the current research in this area
aims at approximating the results rather than computing them precisely—see
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[3, 9, 10, 50, 21, 22, 66, 67]. What is common to those methods is a general
distinction between inner and outer approximations, depending on whether the
approximated interval is enclosed in the exact solution or vice versa.

In the remainder of this subsection, our goal is to single out an algorithm
for probabilistic networks which satisfies the particular requirements imposed
by the framework of this paper. In the following sections, we shall then explore
the network construction problem for each of the proposed semantics.

8.2.1 Requirements of the Probabilistic Logic Framework

Despite the huge number of available algorithms for probabilistic networks, only
a few are valuable candidates for solving problems of the form of Schema (1).
One reason for this is the fact that nearly all proposed semantics for probabilis-
tic logic deal with sets of probabilities and are thus inherently tied to credal
networks. In other words, inference algorithms for Bayesian networks are not
general enough to solve instances of Schema (1). Another reason hinges on
the following particular requirements, which are usually not of primary concern
when building algorithms for probabilistic networks:

• Given that the conclusion ψ on the right hand side of Schema (1) may be
an arbitrary logical formula, the algorithm must be able to compute prob-
abilities P (ψ) or respective intervals [P (ψ), P (ψ)] of arbitrarily complex
queries. If ψ is a propositional formula, a general strategy to handle such
situations is to decompose ψ into pairwise disjoint terms, thus producing
what is called a disjoint sum-of-products. This can be done in two steps:
first transform ψ into a disjunctive normal form (by applying de Morgan’s
laws), and then apply Abraham’s algorithm to obtain ψ ≡ ψ1 ∨ · · · ∨ ψr,
where each ψi is a conjunction of literals (term) satisfying ψi ∧ ψj ≡ ⊥
for all j 6= i [1, 2]. This particular representation of ψ can then be used
to compute P (ψ) =

∑r
i=1 P (ψi) as a sum of probabilities P (ψi), each of

them involving a simple term ψi only. The problem of computing proba-
bilities of complex queries is thus reducible to the problem of computing
term probabilities, and the problem could be solved by querying the net-
work r times, once for each individual term. But what we would ideally
expect from an algorithm is the ability to compute such term probabilities
simultaneously.

• Given that the premises on the left hand side of Schema (1) may include
functionally interrelated probability intervals, e.g., to express conditional
independencies (see §2.2), we would expect an algorithm to cope with
the parameters involved in the description of those interrelated intervals.
In other words, what we need is a general machinery for parameterised
credal networks. Following the remarks of §8.1.3, we assume linearity with
respect to the chosen coordinate system, in order to ensure that extremal
points are easily identifiable.

The method sketched in the remainder of this section is a candidate for common
inferential machinery for various probabilistic logics. The core of the method has
originally been proposed as an exact inference algorithm for Bayesian networks
[15, 16, 23, 137], but it is extensible to approximate inference in credal networks
[50]. As we will see, it can also be used to simultaneously deal with multiple
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queries and to handle functionally interrelated probability intervals, i.e., it meets
all the above requirements.

8.2.2 Compiling Probabilistic Networks

The general idea of compiling a probabilistic network is to split up inference into
an expensive compilation phase and a cheap query answering phase. For a given
network, the foregoing compilation phase is a unique step, which may take place
well before the actual inferences need to be conducted. Computationally, the
compilation may be very expensive, but once the compiled network is available,
it is guaranteed that all sorts of probabilistic queries can be answered efficiently.

To implement this simple idea, the first step is to represent the topological
structure of a probabilistic network by propositional sentences. The resulting
propositional encoding of the network is then transformed into a generic graph-
ical representation called deterministic, decomposable negation normal form, or
simply d-DNNF [24, 136]. One can think of a d-DNNF as a directed acyclic
graph whose internal nodes represent logical AND’s and OR’s, while the leaves
at the bottom of the graph represent literals in a propositional language. The
internal nodes are such that the children of an AND-node do not share common
variables (called decomposability) and the children of an OR-node are pairwise
logically inconsistent (called determinism). These properties are crucial to con-
duct probability computations.

The transformation from the original network encoding into a generic d-
DNNF is a unique step called compilation, the computationally hardest task of
the whole procedure. It can be implemented in various ways, e.g., by a method
called tabular compilation [16], which is essentially a variable elimination proce-
dure that exploits the benefits of local computations. Therefore, it runs in time
and space exponential to the network’s induced treewidth, similar to standard
inference algorithms for Bayesian networks. A compiled Bayesian network can
then be used to answer arbitrary probabilistic queries in time linear to its size.
The computational task is thus divided into an expensive (off-line) compilation
phase and an efficient (on-line) query-answering phase. The latter is further
illustrated by the following example.

Example 8.3 Consider a probabilistic network with two propositional variables
A and B and an arrow pointing from A to B. The specification of the network
requires thus three parameters for P (a), P (b|a), and P (b|ā). Consider for each of
these parameters an auxiliary propositional variable and let {θa, θā}, {θb|a, θb̄|a},
and {θb|ā, θb̄|ā} be their respective sets of values. These values are used as literals
at the bottom of the d-DNNF obtained from compiling the network. The result
of the compilation is shown on the left hand side of Figure 8.

Now let’s suppose we want to use the compiled network to compute P (b).
This involves three steps. First, we need to instantiate the d-DNNF for the
query b, which essentially means to set the literal b to true and the literal b̄
to false. This allows a number of simplifications, resulting in the d-DNNF
shown on the right hand side of Figure 8 (upper part). Second, we need to
eliminate the variables not included in the query, in our case the variable A.
For this, we can set both literals a and ā to true, which again allows a number
of simplifications.26 The result of these simplifications is shown on the right

26In general, it is infeasible to eliminate variables from a d-DNNF, but in the particular
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hand side of Figure 8 (lower part). Finally, we need to propagate concrete
values for the parameters in a simple bottom-up procedure. For this, each AND-
node multiplies and each OR-nodes sums up the values of its children. In our
example, this yields P (b) = P (a)P (b|a) + P (ā)P (b|ā), which is exactly what we
would expect.

∨∨
∨

∧ ∧

∧∧ ∧∧

b b̄

a āθa θā

θb|a θb̄|a θb̄|āθb|ā

∨

∧ ∧

a āθa θāθb|a θb|ā

∨

θa θāθb|a θb|ā

a) b)

c)

∧ ∧

∧ ∧

∧ ∧

Figure 8: Querying a compiled probabilistic network: (a) The compiled network. (b)
The compiled network after instantiating the query b. (c) The instantiated compiled
network after eliminating A.

The procedure illustrated in Example 8.3 may seem a bit cumbersome to solve
such simple examples, but the same scheme is generally applicable to arbitrar-
ily complex probabilistic networks and always runs in time linear to the size of
the compiled d-DNNF structure. This is also true if the query is a conjunc-
tion of literals and for networks with multi-state variables [137]. Moreover, by
postponing the numerical computations to the very last step of the procedure,
we obtain a very flexible way of updating the computations when some of the
numerical parameters change. We will show next how to exploit this flexibility
to approximate inference in credal networks.

8.2.3 The Hill-Climbing Algorithm for Credal Networks

In a credal network, each network parameter is tied to an interval rather than a
sharp value. This defines a credal set over the involved variables and it means
that we get an infinity of choices when it comes to propagating the numerical
values in the resulting d-DNNF. Fortunately, we know that in order to get lower
and upper bounds for our query, it is sufficient to work with the extremal points
of the involved credal sets (see §8.1.1). In other words, we can restrict the in-
finitely large search space to a finite search space which involves all possible
combinations of lower and upper bounds of the given intervals. However, as the
number of such combinations grows exponentially with the number of param-
eters and thus with the size of the network, it is impracticable to conduct an
exhaustive search for reasonably large networks.

case of a compiled probabilistic network, it turns out that the variables to be eliminated are
always such that eliminating them is as simple as instantiating the query variables [135, 137].
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Example 8.4 Consider the result for the query P (b) in the previous exam-
ple: P (b) = P (a)P (b|a) + P (ā)P (b|ā). Now suppose that P (a) ∈ [0.2, 0.5],
P (b|a) ∈ [0.3, 0.4], and P (b|ā) ∈ [0.6, 0.9] are the constraints for the three net-
work parameters. The search space to find the lower and upper bounds for
P (b) ∈ K(b) is therefore of size 23 = 8. The corresponding extremal points are
listed in Table 2, from which we conclude that P (b) = 0.45 and P (b) = 0.8 are
the required lower and upper bounds, respectively.

P (a) P (ā) P (b|a) P (b|ā) P (b)

0.2 0.8
0.3 0.6 ⇒ 0.54

0.9 ⇒ 0.78

0.4 0.6 ⇒ 0.56
0.9 ⇒ 0.80 = P (b)

0.5 0.5
0.3 0.6 ⇒ 0.45 = P (b)

0.9 ⇒ 0.60

0.4 0.6 ⇒ 0.50
0.9 ⇒ 0.65

Table 2: The eight extremal points of the convex set K(A,B) in the credal network of
the current example.

The fact that an exhaustive search is too expensive in general requires us to
perform some sort of approximation. A generic combinatorial optimization
technique, which is widely used in similar AI-related applications, is called hill-
climbing [123]. The goal of hill-climbing is to maximize (or minimize) a function
f : X → R through local search, where X is usually a discrete multi-dimensional
state space. Local search means jumping from one configuration in the state
space to a neighboring one, until a local or possibly the global maximum (or
minimum) is reached. This step is usually iterated for some time with randomly
generated starting points, thus making it an interruptible-anytime algorithm.

To approximate lower and upper bounds when querying a credal network, we
can apply the hill-climbing approach to the search space defined by the credal
set’s extremal points. One can think of it as a walk along the edges of the credal
set’s convex hull. Using the resulting d-DNNF after compiling and querying the
network, we can easily update the numerical result for the current extremal
point. As demonstrated in [50], the d-DNNF also supports the determination
of the neighbour with the steepest ascent (or descent), which is important for
optimizing the performance of the hill-climbing procedure.

Example 8.5 Consider the credal network from Example 8.3 and the list of
extremal points from Table 2, and suppose we first want to compute the upper
bound P (b). Let us start the hill-climbing by first considering the lower bounds
of all given intervals, i.e. P (a) = 0.2, P (b|a) = 0.3, and P (b|ā) = 0.6, which
yields P (b) = 0.54. Then suppose we decide to change P (b|ā) from 0.6 to 0.9
to get P (b) = 0.78, which is a first major improvement. If we then decide
to change P (b|a) from 0.3 to 0.4, we have already found the global maximum
P (b) = 0.8 after the first hill-climbing iteration. For the lower bound P (b), let
us start from scratch with all lower bounds. By simply changing P (a) from 0.2

67



to 0.5, we immediately find the global minimum P (b) = 0.45. Note that it is the
simplicity of the example that prevents us from running into a local maximum
or minimum. The whole search space of extremal points is shown on the left
hand side of Figure 9, where each arrows indicatesa an uphill path between two
neighbors.

0.2/0.3/0.6
⇒ 0.54

0.2/0.3/0.9
⇒ 0.78

0.2/0.4/0.6
⇒ 0.56

0.5/0.3/0.9
⇒ 0.60

0.5/0.3/0.6
⇒ 0.45

0.2/0.4/0.9
⇒ 0.80

0.5/0.4/0.9
⇒ 0.65

0.5/0.4/0.6
⇒ 0.50

∨

θa θā θb|ā
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c)

∧ ∧

θb̄|a

∧

θb|a

∨

∨

θa θāθb|a θb|ā
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a)

Figure 9: (a) Hill-climbing in the search space of extremal points. (b) The compiled
network instantiated for a ∨ b. (c) Querying a parameterized credal network.

For more details on this procedure and for a formal description of the hill-
climbing algorithm we refer to [50].

8.2.4 Complex Queries and Parameterised Credal Networks

To conclude this section, let us discuss how to use the proposed hill-climbing al-
gorithm to meet the particular requirements discussed earlier in this subsection.
The first point was to allow arbitrarily complex queries, which can be solved by
querying the network for a corresponding set of disjoint terms. This means that
the compiled network needs to be instantiated individually for each term. The
result of this is a collection of d-DNNFs, which are likely to overlap heavily for
large networks. Such a structure with multiple roots is called shared d-DNNF,
and it supports the same bottom-up propagation to compute probabilities. We
can thus conduct the same hill-climbing procedure, except that we need to max-
imize (or minimize) the sum of the values obtained at each root. Or we may
simply connect all individual roots with an OR-node and then maximize (or
minimize) the value obtained at this newly created root.

Example 8.6 Consider the same credal network from the previous examples,
but now let ψ = a ∨ b be the hypothesis of interest. The first step is to write ψ
as a disjoint sum-of-products (a∧¬b)∨ b, which is obviously equivalent to a∨ b.
We need thus to instantiate the compiled network twice, once for a ∧ ¬b and
once for b. For a ∧ ¬b we simply get an AND-node which connects θa and θb̄|a,
and for b the result is as discussed before. The result of connecting them by an
OR-node is depicted on the right hand side of Figure 9 (upper part). This is the
structure on which the hill-climbing procedure operates for the query a ∨ b.
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The second particular requirement of the probabilistic logic framework is
the ability to deal with parameterised credal networks. This means that we
may need to take care of intervals that are functionally interrelated. In the
proposed hill-climbing procedure, this is quite easy to realize: we only need to
make sure that the set of selected extremal points is always compatible with the
given functional dependencies. This makes the transition from one extremal
point to a neighboring one slightly more complicated, but in return we may get
a corresponding search space reduction.

Example 8.7 Consider the credal network from Example 8.4 and let x :=
P (a) ∈ [0.2, 0.5]. Now suppose that P (b|ā) ∈ [0.6, 0.9] is replaced by P (b|ā) =
x+ 0.4, i.e. P (b|ā) functionally depends on P (a) as indicated on the right hand
side of Figure 9 (lower part). This reduces the number of network parameters
from 3 to 2 and therefore the size of the search space from 23 = 8 to 22 = 4.
In the hill-climbing procedure discussed in Example 8.5, this reduction prevents
us from jumping from the initial result P (b) = 0.54 to P (b) = 0.78 by changing
the value of P (b|ā). Instead we may first change P (b|a) from 0.3 to 0.4 to get
P (b) = 0.56. If P (a) is then changed from 0.2 to 0.5, we must also change
P (b|ā) from 0.6 to 0.9, and this leads to the new upper bound P (b) = 0.65.
Similarly, we get a new lower bound P (b) = 0.54.

9 Networks for the Standard Semantics

In §2 we introduced the standard semantics for the inferential problem expressed
in Schema (1). In this section we investigate how credal networks can be em-
ployed to improve the reach and efficiency of inferences in the standard se-
mantics. After that we briefly discuss some conceptual issues that arise from
inference in a credal network.

9.1 The Poverty of Standard Semantics

In the standard semantics, the inferences run from credal sets, determined by
constraints on the probability assignments, to other credal sets. Clearly, the
probability assignments in the credal sets are defined by the axioms of Kol-
mogorov. These axioms function as basic rules of inference, in the sense that
they allow us to relate constraints in the premises to constraints in the conclu-
sion. As we made clear in §2, all the constraints on the probability assignments
derive from explicit premises. The standard semantics on itself imposes no
further constraints.

In §8 we explained that a credal set can be summarised conveniently in a
credal network, and that such networks can be used to speed up the inference
process. But it is only when we assume the so-called strong or complete ex-
tension of a credal network that we can fully employ their computational and
conceptual advantages. Moreover, taking the strong or complete extension of a
credal network is only really useful if some edges are missing from the network.
In this respect a credal network representation works the same as a Bayesian
network representation: the advantages of independence and local computation
are most salient for sparse networks.

As also explained in the foregoing, taking the strong or complete extension
of an incomplete graph amounts to making specific independence assumptions.
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The idea is to use the specifics of the domain of application, as captured by
the semantics of the inference, to motivate these assumptions. However, the
standard semantics does not have any specific domain of application, and so the
additional independence assumptions cannot be motivated from semantic con-
siderations. Therefore, in the standard semantics credal networks are only useful
if the premises themselves include probabilistic independence assumptions.

9.2 Constructing a Credal Net

Suppose that we want to deal with an inference problem in the standard seman-
tics, and that the premises include certain explicit probabilistic independencies.
Let I be the set of these probabilistic independencies. One can then construct
a credal network (under a complete extension) as follows.

Algorithm 9.1 Construction of a credal network for the standard semantics,
based on explicit independence assumptions.

Input: a set V = {A1, . . . , AM} of propositional variables, a set I of proba-
bilistic independence relations of the form Ai ⊥⊥ Aj or Ai ⊥⊥ Aj |Ak, and
premises ϕX1

1 , . . . , ϕXNN involving those variables.

1. Construction of a graph: application of the adapted PC-algorithm of
Pearl [112] to find the smallest network G that satisfies the set of indepen-
dence relations I.

(a) Start off with a complete undirected graph on V .
(b) For n = 0, 1, 2, . . ., remove any edges Ai—Aj if Ai ⊥⊥ Aj |X for some

set X of n neighbours of Ai.
(c) For each structure Ai—Aj—Ak in the graph with Ai and Ak not

adjacent, substitute Ai −→ Aj ←− Ak if Aj was not found to screen
off Ai and Ak in the previous step.

(d) Repeatedly substitute:
i. Ai −→ Aj → Ak for Ai → Aj—Ak with Ai and Ak non-adjacent;
ii. Ai −→ Aj for Ai—Aj if there is a chain of arrows from Ai to

Aj ;
iii. Ai −→ Aj for Ai—Aj if there are two chains Ai—Ak −→ Aj

and Ai—Al −→ Aj with Ak and Al not adjacent;
iv. Ai −→ Aj for Ai—Aj if there is a chain Ai—Ak −→ Al −→ Aj

with Ak and Aj not adjacent.

Finally, define the network coordinates P (a1
k|ac(j)j · · · ac(j′)j′ ) = γ

c(j)···c(j′)
k|j···j′ ,

or γk for short.

2. Derivation of constraints on network coordinates: deriving the
restrictions to the conditional probability assignments in the network G,
along the following lines.

(a) For each premise ϕXii , collect the rank number of the propositional
variables Aj that appear in ϕi, and all those propositional variables
Aj′ that are parents of these Aj , in the vector si, whose elements are
denoted si(n). Order them such that si(n− 1) < si(n).
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(b) Rewrite the expression ϕi in a disjunctive normal form of the propo-
sitional variables Asi(n) according to

∨
m

∧
nA

ei(m,n)
si(n) . In this expres-

sion ei(m,n) ∈ {0, 1} are the elements in the matrix ei whose rows
ei(m) indicate whether the m-th conjunction in the disjunctive form
contains A0

si(n) or A1
si(n).

(c) Compute the probability P (
∧
nA

ei(m,n)
si(n) ) in terms of the network co-

ordinates, by relying on the valuations of propositions of lower rank.
We have

Γmi =
∏
n

γ
ei(m,1)···ei(m,n−1)
si(n)|si(1)···si(n−1).

Finally, compute the probability

P (ϕi) = P (
∨
m

∧
n

A
ei(m,n)
si(n) ) =

∑
m

Γmi .

(d) Impose the constraints P (ϕi) =
∑
m Γmi ∈ Xi, and collect them in a

single constraint set Γ for all the ϕi. This constraint set is a system
of linear equations in the coordinates γc(j)···c(j

′)
k|j···j′ , or γckk for short.

(e) Compute the extremal points vi for the coordinates involved in the
equations Γ. They can be found by iteratively solving Γ for the upper
and lower bounds on them. We start at i = M = 1.

i. Index the coordinates involved in the constraints with m. In the
extremal point indexed i, vi(m) denotes the value of coordinate
m in the point indexed i.

ii. If there are unique solutions for Γ among the free coordinates in
vi, set the corresponding entries in vi(m) to these solutions.

iii. If all the entries in vi(m) have a value, start on a new extremal
point, setting i = i + 1. If i > M , then go to the last line: all
the extremal points have been found.

iv. Let n be the number of free parameters in vi; for convenience we
number them with j = 1, . . . , n. For i′ from M down to i + 1,
copy vi′+2n−1 = vi′ and erase vi′ . Then set M = M + 2n − 1.
We have made a new set of extremal points vi+1 to vi+2n−1.

v. Now for i′ from i to i+ 2n− 1, set vi′(m) = vi(m) for all vi(m)
that have a fixed value. Calculate the interval [lm, um] for each
vi(m) whose value is still undetermined, and set

vi+2(j−1)(m) = lm vi+2j−1(m) = um.

Each new extremal point is thus given one additional extremal
value for one of the free parameters.

vi. Now return to step ii. to solve the remaining free coordinates in
the vector vi.

vii. Check for duplicates in the set of extremal points vi and remove
them.

Output: a graph G and a set of extremal points S in the network coordi-
nates γk corresponding to the independence relations I and the premises
ϕX1

1 , . . . , ϕXnn .
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The determination of the extremal points can be laborious. If in total there are
dim(Γ) = N coordinates involved in the constraints, there are at most N !2N

extremal points. But generally the number of points will be much smaller.
To see what the algorithm comes down to in practice, consider the following
example.

Example 9.2 Let Aj for j = 1, 2, 3 be the propositional variables V , and let
I = {A2 ⊥⊥ A3 | A1} be the set of independence relations. Pearl’s adapted PC-
algorithm gives us the graph shown in Figure 10. The network coordinates are
P (a1) = γ1, P (a2|ai1) = γi2|1, and P (a3|ai1) = γi3|1.

A2 A1 A3

Figure 10: The graph expressing that A2 ⊥⊥ A3 | A1.

Now imagine that we have the following constraints on the variables in the graph:
ϕX1

1 = ((a1 ∨ ¬a2)→ a3)[1/3,2/3] and ϕX2
2 = (a3)1/2. We then apply the algorithm

for the derivation of constraints on the coordinates γk as follows.

• We collect and order the rank numbers of the propositional variables ap-
pearing in the premises in two vectors s1 = 〈1, 2, 3〉 and s2 = 〈1, 3〉.

• We rewrite the expression ϕ1 = (a1 ∨ ¬a2) → a3 in a disjunctive normal
form, and compute the probabilities in terms of the network coordinates,

Disjunct Vector e1 Probability Γm1
¬a1 ∧ ¬a2 ∧ ¬a3 e1(1) = 〈0, 0, 0〉 (1− γ1)(1− γ0

2|1)(1− γ0
3|1)

a1 ∧ ¬a2 ∧ ¬a3 e1(2) = 〈1, 0, 0〉 γ1(1− γ1
2|1)(1− γ1

3|1)
a1 ∧ a2 ∧ ¬a3 e1(3) = 〈1, 1, 0〉 γ1γ

1
2|1(1− γ1

3|1)
a1 ∧ ¬a2 ∧ a3 e1(4) = 〈1, 0, 1〉 γ1(1− γ1

2|1)γ1
3|1

a1 ∧ a2 ∧ a3 e1(5) = 〈1, 1, 1〉 γ1γ
1
2|1γ

1
3|1

(a1 ∨ ¬a2)→ a3 (1− γ1)(1− γ0
2|1)(1− γ0

3|1) + γ1

and similarly for a3,

Disjunct Vector e2 Probability Γm2
¬a1 ∧ ¬a2 ∧ a3 e2(1) = 〈0, 0, 1〉 (1− γ1)(1− γ0

2|1)γ0
3|1

a1 ∧ ¬a2 ∧ a3 e2(2) = 〈1, 0, 1〉 γ1(1− γ1
2|1)γ1

3|1
¬a1 ∧ a2 ∧ ¬a3 e2(3) = 〈0, 1, 1〉 (1− γ1)γ0

2|1γ
1
3|1

a1 ∧ ¬a2 ∧ a3 e2(4) = 〈1, 1, 1〉 γ1γ
1
2|1γ

1
3|1

a3 (1− γ1)γ0
3|1 + γ1γ

1
3|1

• Impose the constraints P (ϕi) =
∑
m Γmi ∈ Xi, collecting them in the
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following system of linear equations:

(1− γ1)(1− γ0
2|1)(1− γ0

3|1) + γ1 ≥ 1/3

(1− γ1)(1− γ0
2|1)(1− γ0

3|1) + γ1 ≤ 2/3

(1− γ1)γ0
3|1 + γ1γ

1
3|1 = 1/2.

• We compute the extremal points by iteratively filling in extremal values of
each of these coordinates, according to the algorithm set up in the forego-
ing. To keep this reasonably brief, we will only deal with the first couple
of vectors. For convenience we write γ0

2 = γ2, γ0
3 = γ3, and γ1

3 = γ4.

– There are no unique solutions from the constraints, so there are n = 4
free coordinates. We create 7 new vectors vi, and we set M to 8.
There were no vectors vi′ for i′ > i yet, so there is no need to copy
any of them downwards.

– We compute the bounds 0 ≤ γ1 ≤ 2/3, and set v1(1) = 0 and v2(1) =
2/3. We compute similar bounds for γk with k = 2, 3, 4, and fill in v3

to v8.
– We return to line (ii) and check whether we can solve Γ under the

additional constraint that γ1 = 0. And we can: we fill in γ3 = 1/2.
– We now have n = 2 free parameters left. So we copy vectors v2 to v8

down into v5 to v11, and create the empty lines v2 to v4. Then for
i′ = 2, 3, 4 we copy vi′(1) = v1(1) = 0 and vi′(3) = v1(3) = 1/2 into
the new lines.

– We then compute the bounds 0 ≤ γ2 ≤ 1/3 and 0 ≤ γ4 ≤ 1, and fill
them in: v1(2) = 0, v2(2) = 1/3, v3(4) = 0, and v4(4) = 1.

– We return to line (ii) and see if we can solve the last remaining free
coordinate in vector v1. We cannot, so we create one copy of v1 in
v2, copy all other vi downwards, compute the bounds 0 ≤ γ4 ≤ 1, and
fill in v1(4) = 0 and v2(4) = 1, thus completing the computation of
the first two extremal points.

– It is readily seen that extremal point v3, which has v3(2) = 1/3, has
the same bounds 0 ≤ γ4 ≤ 1, so that we again copy all further vi
downwards, and fill in v3(4) = 0 and v4(4) = 1.

– We deal with the next four extremal points, that have vi(1) = 0 and
vi(2) = 1/3, in similar fashion. The difference is that we have here
filled in vi(4) already, and we compute upper and lower bounds for
γ2, filling in vi(2). But the results are pairwise identical to the first
four extremal points.

– We now start on v9, which has v9(1) = 2/3 . . .

• Once all extremal points have been found, the algorithm halts. We output
the graph depicted above and a set of points vi.

As indicated, the derivation of constraints on the coordinates of the network is
computationally costly, especially for dense graphs. However, it must be remem-
bered that after the construction of the graph and the derivation of constraints,
any further inference is relatively fast. As before, the compilation of the network
can be seen as an investment into future inferences: once the network is built,
querying it is fast and easy.

73



9.3 Dilation and Independence

The use of credal sets leads to a rather awkward result when it comes to up-
dating the probability assignments to new information by conditionalisation.
The probability interval may get, what is called, dilated ; see [127]. We briefly
discuss dilation here because it relates to the independence assumptions needed
for using the strong or complete extension of a credal network.

Consider the credal set given by P (a) = 1/2 and P (b) = 1/2, but without an
independence relation between A and B. In terms of the coordinates 〈α, β0, β1〉
used in §8.1.2, we can write P (a) = α = 1/2 and P (b) = αβ1 +(1−α)β0 = 1/2, so
that the credal set is defined by α = 1/2 and β1 = 1−β0. This set is represented
by the thick line in Figure 11.

Now imagine that we decide to observe whether a or ā. Paradoxically, this
decision is sufficient to throw us into doubt over the value of the probability of
b, no matter what the result of the observation will be! From the probability
assignments it follows that, whether we learn a or ā, the probability for b changes
from a sharp value to the whole interval after the update. This is because when
we learn a and condition on it, the probability for b becomes P (b|a) = β1 ∈ [0, 1],
and similarly, when we learn ā and condition on it, it becomes P (b|ā) = β0 ∈
[0, 1], as can be read off from Figure 11. We say that the probability for b is
dilated by the partition {a, ā}.

α
→

β 1
→

β0 →

1/2

•

Figure 11: The credal set represented in the coordinate system 〈α, β0, β1〉, as the
thick line in the square α = 1/2. For each of the points in this credal set we have
P (b) = 1/2, but both β0 and β1 can take any value in [0, 1]. The credal set associated
with independence between A and B is depicted as a shaded area, β0 = β1. By the
addition of the independence assumption, the credal set becomes the intersection of
the thick line and the independence area, namely the singleton {〈1/2, 1/2, 1/2〉}.

This awkward situation comes about because the restrictions on the proba-
bility assignment do not tell us anything about the relations between A and B.
Accordingly, dilation is avoided if we assume an independence relation between
A and B. As illustrated in Figure 11, if we add the independence constraint
that β0 = β1, then the credal set is confined to α = β0 = β1 = 1/2. Learning
whether a or ā then leaves the probability of b invariant.
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10 Networks for Probabilistic Argumentation

In a classical probabilistic argumentation system, in which the available infor-
mation is encoded by a set of logical sentences Φ and a probability measure P
over a subset of variables W appearing in Φ (see Part I, §2), we may already use
a probabilistic network for the specification of P . In the simplest case, in which
we use a fully specified Bayesian network to obtain a unique P , this leads to
a probabilistic argumentation system according to Definition 3.1, and we may
then compute sharp degrees of support and possibility for our hypotheses of in-
terest. As an example of how to enhance a Bayesian network by a set of logical
constraints, and of how to use the enhanced Bayesian network for reasoning and
inference, this simple setting is interesting in its own right.

10.1 Probabilistic Argumentation with Credal Sets

If we depart from the assumption of a unique probability measure, we can still
apply the probabilistic argumentation framework, but we must take additional
care when it comes to computing degrees of support and possibility. Examples
of such under-specified probabilistic argumentation systems have been discussed
in §3.3, where the question of Schema (1) has been interpreted in various ways
from the perspective of the probabilistic argumentation framework. To deal
with cases like that, let P denote an arbitrary set of probability measures over
W , and let A = {(V,LV ,Φ,W, P ) : P ∈ P} be the corresponding family of
probabilistic argumentation systems. For a given hypothesis ψ, we may then
use each A ∈ A to compute a pair of degrees of support and possibility, and
then look at the sets Ydsp = {dspA(ψ) : A ∈ A} and Ydps = {dpsA(ψ) : A ∈ A}
of all such degrees of support and possibility.

The immediate question that arises when applying this procedure, which
comes out with a pair of target sets Ydsp and Ydps, is how to use those sets to
judge the truth or falsity of the hypothesis ψ. By looking at degrees of support
as a measure of cautiousness with respect to ψ being true in the light of the
given evidence, we suggest to select the most cautious value of Ydsp, that is
the minimal degree of support dsp(ψ) = min{dspA(ψ) : Ydsp}. In order to be
consistent with Definition 3.3 in §3.1, dps(ψ) = 1 − dsp(¬ψ), we must then
select the least cautious value of Ydps, that is the maximal degree of possibility
dps(ψ) = min{dpsA(ψ) : Ydps}. Note that dsp(ψ) ≤ dps(ψ) still holds for all
ψ, but since dsp(ψ) and dps(ψ) will usually be generated by quite different
elements of P, we should refrain from taking them as respective bounds of a
target interval that extends the idea of the standard semantics to probabilistic
argumentation.

In the case where the set of probabilities P is restricted to a credal set, e.g.
by employing a credal network for the specification of the admissible probability
measures, it is guaranteed that both target sets Ydsp and Ydps are intervals. This
follows from Definition 3.2, in which degrees of support are defined as condi-
tional probabilities, and from the way convexity is transmittable to conditional
probabilities (see §2.1.4 and §8.1.2).
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10.2 Constructing and Applying the Credal Network

In §3 we discussed two different types of semantics for Schema (1). The seman-
tics of the first type in §3.3.1 are all extensions of the standard semantics to
the probabilistic argumentation framework, and we may thus follow a strategy
similar to the one outlined in §9 to construct a network. But this is not the
case for the semantics of the second type in §3.3.2, where each given probability
set Xi is interpreted as a probability constraint for the reliability of a source
providing the premise ϕi. Moreover, by assuming the sources to be pairwise
independent, it seems that the second type of semantics does not provide ad-
equate grounds for constructing non-trivial networks. The discussion in the
remaining of this section will therefore not further pursue this particular way of
interpreting instances of Schema (1).

In the extended standard semantics of §3.3.1, we assume a set Φ of logical
constraints to be given in addition to the premises on the left hand side of
Schema (1). For the premises to be useful to construct a network, let them
include a set I of explicit probabilistic independencies, similar to §9.2. Note
that such independencies may be available e.g. from representing a probabilistic
argumentation system in form of Schema (1) as proposed in §3.2. In general,
the best we can do then is to apply Algorithm 9.1 to the set of premises to get
a credal network that represents the corresponding credal set w.r.t. ΩW , where
W denotes the set of variables appearing in the premises.

This credal network together with the common machinery from §8.2 can
then be used to compute respective sets Ydsp and Ydps of degrees of support and
possibility for a given hypothesis ψ. For this, the following algorithm consist of
3 steps: the first step is the network construction according to Algorithm 9.1,
the second step is the determination of the sets ArgsA(ψ), ArgsA(¬ψ), and
ArgsA(⊥), and the third step is the application of the common machinery from
§8.2 to approximate the target intervals. Note that by explicitly calling the
common machinery in last step, this algorithm differs from the algorithms of
the following sections. The reason for this is that we need to adapt the hill-
climbing algorithm to approximate degrees of support and possibility instead of
probabilities of normal events.

Algorithm 10.1 Construction and evaluation of a credal network for the ex-
tended standard semantics, based on explicit independence assumptions and an
additional set of logical constraints.

Input: two sets W = {A1, . . . , AM} and V ⊇ W of propositional variables,
a set I of probabilistic independence relations (of the form Ai ⊥⊥ Aj or
Ai ⊥⊥ Aj |Ak) and premises ϕX1

1 , . . . , ϕXNN involving variables from W , a
set Φ of logical constraints involving variables from V , and a query ψ.

1. Network construction: Use Algorithm 9.1 to construct a credal network
that represents I and ϕX1

1 , . . . , ϕXNN .

2. Computing arguments, counter-arguments, and conflicts: Use
standard inference techniques to compute logical representations α+, α−

and α⊥ of the sets ArgsA(ψ), ArgsA(¬ψ), and ArgsA(⊥), respectively,
where A = (V,LV ,Φ,W, P ) is the involved probabilistic argumentation
system (for some under-determined probability measure P ).

76



3. Target interval approximation:

(a) Transform α+, α−, and α− into disjoint sums-of-products (see §8.2.1).

(b) Compile the credal network (see §8.2.2) and instantiate it for each of
the disjoint terms of α+, α−, and α⊥.

(c) Adapt and apply the hill-climbing algorithm from §8.2.3 to the com-
piled network to approximate lower and upper bounds of

dsp(ψ) =
P (α+)− P (α⊥)

1− P (α⊥)
and dps(ψ) =

1− P (α−)
1− P (α⊥)

.

Output: Inner approximations of the target intervals Ydsp and Ydps for the first
semantics of §3.3.1.

Note that one of the computationally hardest tasks of the above algorithm is
the computation of the logical representations α+, α−, and α⊥ in the second
step (their size is exponential in the worst case). Another difficult task is the
transformation of α+, α−, and α⊥ into disjoint sums-of-products (there are ex-
ponentially many such terms in the worst case). We may thus need appropriate
approximation algorithms, for example one that computes the shortest terms
first [46, 47]. By doing so, we may still get good approximations of the target
intervals, but we must be aware that they may no longer be inner approxima-
tions.

With the above computational scheme, we obtain a way of extending the
standard semantics to the probabilistic argumentation framework, but not for
the further options given in §3.3.1. To extend it, for example for the semantics
that takes each premise ϕXii as a constraint dsp(ϕ) ∈ Xi on respective degrees of
support, we must first compute respective logical representations αi for each set
ArgsA(ϕi) and for ArgsA(⊥), and then construct the credal network with respect
to the constraints [P (α+) − P (α⊥)]/[1 − P (α⊥)] ∈ Xi. To get rid of the non-
linearity of those expressions, we may consider k = 1− P (α⊥) to be a constant
value and then consider respective linear constraints P (α+) − P (α⊥) ∈ kXi.
This works in a similar way for constraints on degrees of possibility and for
combined constraints (see §3.3.1).

11 Networks for Evidential Probability

In §4 we discussed two different semantics for Schema (1) to answer two different
types of inferential question for the theory of evidential probability. The first
interpretation given to Schema (1) is just the usual semantics of evidential
probability, which we call first-order EP (§4.3.1). The second interpretation
given to Schema (1) is a proposal to evaluate the robustness of a particular
first-order EP assignment, which we call second-order EP (§4.3.3).

Each semantics leads to very different properties of the entailment relation
in Schema (1), however. First-order EP is a non-probabilistic, sub-System P
non-monotonic logic of probabilities, whereas second-order EP is a monotone
probabilistic logic. Thus the inferential methods for each semantics is quite
different.

In this section we investigate how credal networks can be used to calculate
an answer for second-order EP inference only, since first-order EP is essentially
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a logic of probability statements rather than a probabilistic logic. Nevertheless,
second-order EP depends crucially upon outputs from first-order EP-arguments
representing all possible counter-factual EP arguments with respect to the ac-
tually accepted evidence. So, we first present an algorithm for first-order EP,
which does not rely upon credal networks, and then present an algorithm for
constructing a credal network that may exploit the common machinery of §8.2.

11.1 First-Order Evidential Probability

Algorithm 11.1 Computing First-order Evidential Probability.

Input: a pair 〈χ,Γδ〉, where χ is a formula and Γδ = {ϕ1, . . . , ϕn} a set of
formulas of Lep.

1. Selection of potential probability statements: Given 〈χ,Γδ〉, con-
struct the set Γ[χ] by Definition 4.2:

(a) Let Γ[χ] be the equivalence class defined by

{%~x(τ(~x), ρ(~x), [l, u]) : χ ≡ τ(ω) ∧%(τ(ω), ρ(ω), [l, u])},

where each %~x(τ(~x), ρ(~x), [l, u]) of X is a direct inference statement
of Γδ such that ~x is substituted by constants ω in τ and τ(ω) is
coextensive with χ.27

(b) The direct inference statements in Γ[χ] ⊆ Γδ are the potential prob-
ability statements for χ.

2. Selection of relevant statistical statements: Given Γ[χ], construct
the set ΓRS[χ] ⊆ Γ[χ] by applying Richness and Specificity (§4.1.1):

(a) Define ΓR[χ] ⊆ Γ[χ] such that ∀ϕ, ϑ ∈ Γ[χ], if ϕ and ϑ conflict and ϕ is
a marginal distribution and ϑ a joint-distribution, then ϑ ∈ ΓR[χ] but
ϕ 6∈ ΓR[χ].

i. Determining conflict: To determine whether direct inference
statements ϕ, ϑ conflict, compare the interval [l, u] of ϕ to the
interval [k, t] of ϑ. Only 3 comparisons are necessary. Given
[l, u]: accept that [k, t] conflicts with [l, u] if:
· k < l and t < u, or
· l > k and t > u, or
· l = k and t = u.

ii. Distinguishing between a marginal distribution and a
joint-distribution: There is a syntactic difference between a
marginal distribution whose statistic is n dimensions and a joint-
distribution whose statistic is n+m dimensions, for some positive
m. This will be expressed by the arity of the target formula
predicates (τ) appearing in ϕ and ϑ.

27Note that the sequence of constants ω must be such that the variable substitution of τ(ω)
leaves no free variables in τ , but that ρ(ω) may have open variables. This will be important
in the implementation of the Richness rule. Also, we relax notation here by omitting the
corner-quotes.
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(b) Define ΓRS[χ] ⊆ ΓR[χ] such that ∀ϕ, ϑ ∈ ΓR[χ], if ϕ and ϑ conflict but ρ
of ϕ and ρ′ of ϑ are such that ρ ⊂ ρ′, then ϕ ∈ ΓRS[χ] but ϑ 6∈ ΓRS[χ] .

i. Apply step 2.a.i. to determine conflict, replacing Γ[χ] with ΓR[χ].
ii. Selecting specific statistics for χ: Specificity concerns ex-

plicit logical relationships between reference classes ρ of ϕ and
ρ′ of ϑ that appear in Γδ. Specificity applies to ϕ and ϑ when
both are in ΓR[χ], the interval of ϕ conflicts with the interval of ϑ
but ρ ⊂ ρ′.

3. Find the shortest cover: Given |ΓRS[χ] | = n, define Y = {X1, . . . , Xn} as
the set of n intervals expressed by the formulas in ΓRS[χ] . Apply Strength
(§4.1.1) to Y closed under difference:

(a) If |ΓRS[χ] | = 0, return [0, 1].

(b) Sort Y = {X1, . . . , Xn} by the lower endpoints l11 , . . . , lnj in ascend-
ing order. Name that sequence Y∗.

(c) Sort Y by the upper endpoints u11 , . . . , unj in descending order.
Name that sequence Y∗. Then for j = 1 to n:

i. If |Y| = 1 and Y = {[l, u]}, return [l, u].
ii. If the max endpoint of ui of interval Xi of Y that is in the jth

position in Y∗ (ui ∈ Xi,j of Y∗) is not equal to the max endpoint
uk ∈ Xk,j of Y∗, then return [l, u′]; otherwise:

iii. If the max endpoint of ui ∈ Xi,j of Y∗ is equal to the max
endpoint uk ∈ Xk,j of Y∗, then eliminate Xi from Y∗ and from
Y∗ and go to 3.c.i.

Output: An interval [l, u] corresponding to the proportion of EP models of
ϕ1

1, . . . , ϕ
1
n that are also models of χ.

11.2 Second-Order Evidential Probability

The first-order question concerns the assignment of evidential probability to a
statement given some evidence, which is captured in Schema (1) by the EP
semantics for |m. The second-order question concerns the proportion of overlap
among all possible combinations of evidence for ψ occurring in Γδ.

The second-order EP probability of ψ on evidence ϕX1
1 , . . . , ϕXnn is

P (ψ) =
1∑

e1,...,em=0

P (ψ|ϕe11 , . . . , ϕ
em
m ) · P (ϕe11 , . . . ϕ

em
m ),

i.e., summing over all possible evidence for ψ with respect to Γδ, where P (ϕi) ∈
[1− δ, 1] is the prior confidence in the evidence for ψ. In this paper we replace
P (ϕe11 , . . . ϕ

em
m ) by

m∏
1

P (ϕeii ),

where P (ϕi) ∈ [λ, 1], λ = 1−δ. However, details about the theory of acceptance
are relevant in selecting λ. If we treat the interval [1 − δ, 1] as characterizing
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the risk of accepting the set of premises, assign equal probability of risk of error
to each premise while assuming these probabilities are independent, then λ =
1−δ 1

m . But the risk term δ typically is thought to characterize the inference for
accepting each statement, which is what motivates the approach adopted here.
Furthermore, independence in second-order EP just says that the assignment of
first-order evidential probability to a conclusion depends only on the m pieces
of possible evidence in Γδ for that conclusion, and the individual risk associated
with accepting a false premise as a true one. A graphical representation of the
dependency relations in a second-order EP inference is represented by the edges
in Figure 12.

ϕ1 ϕ2 ϕm

ψ

. . .

Figure 12: Second-order EP credal network.

We now present an algorithm for calculating second-order EP.

Algorithm 11.2 Computing Second-order Evidential Probability.

Input: ϕ[X1]
1 , . . . , ϕ

[Xn]
n |= ψ?, where ψ is the first-order EP assignment 〈χ, [l, u]〉

on the premises ϕ1, . . . , ϕn output by Algorithm 11.1.

1. Construction of graph:

(a) For Prob(χ,Γδ), construct the set {ϕ1, . . . , ϕm} = ∆ ⊆ Γδ of possible
evidence for χ with respect to Γδ (§4.3.2).

(b) Define the set of nodes V to include ϕ1, . . . , ϕm, ψ.
(c) Connect arrows from each ϕi to ψ. (See Figure 12).

2. Probabilities:

(a) Attach: X1 to ϕ1, . . . , Xm to ϕm.

(b) Compute conditional probabilities: P (χ|ϕe11 , . . . , ϕ
em
m ) = |[l,u]∩[l′,u′]|

|[l,u]| ,
when ei = 1 ∨ ei = 0, for all 1 ≤ i ≤ m.

Output: a credal network with graph G, representing probabilistic indepen-
dence relations implicit in second-order EP inference, and probabilities
calculated as described above.

To compute Y for ψ, use the common machinery of §8.2.

12 Networks for Statistical Inference

In §5 we discussed two ways in which classical statistics can be captured in
Schema (1), one using functional models and fiducial probability, and one using
evidential probability to represent the fiducial argument. This section investi-
gates the use of the common machinery of §8.2 and Algorithm 11.1 in classical
statistics.
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Hθ D ω

Figure 13: A network representing the conditional independencies between Hθ, ω and
D in the functional model f(Hθ, ω) = D that generates the fiducial probability for Hθ
from the distribution over the stochastic elements ω.

12.1 Functional Models and Networks

As described in §5.1.2, one way of capturing classical statistics in Schema (1)
makes use of fiducial probability and functional models: on the basis of an
invertible functional relation f(Hθ, ω) = d between data D, stochastic elements
ω, and hypotheses Hθ, a probability assignment P (ω) determines a probability
assignment P (Hθ). While the use of fiducial probability in Schema (1) is rather
limited, we want to present a way in which credal networks may be used to aid
the computation of fiducial probability.

12.1.1 Capturing the Fiducial Argument in a Network

To set the stage, we first provide a network representation for the fiducial infer-
ence represented by functional models. We restrict attention to fiducial proba-
bility using an invertible functional relation. It may be recalled from §5.1.2 that
we can relax the requirement of invertibility for the functional relation f , and
derive degrees of support and possibility for a hypothesis HI consisting of a set
of hypotheses Hθ. However, we will not discuss the generalisation to degrees of
support and possibility here.

In a fiducial argument, the relation between the hypotheses Hθ, the stochas-
tic elements ω, and the data D is such that the stochastic elements and the
hypotheses are probabilistically independent:

P (Hθ, ω) = P (Hθ)P (ω). (28)

Moreover, given a hypothesis hθ and a stochastic element ω, the occurrence of
the data d is completely determined, P (d|hθ, ω) = Id(hθ, ω) where Id(hθ, ω) = 1
if f(hθ, ω) = d and Id(hθ, ω) = 0 otherwise. The corresponding network is
depicted in Figure 13.

If we condition on the observed data d then, because of the network structure
and the further fact that the relation f(Hθ, ω) is deterministic, the variables
ω and Hθ become perfectly correlated: each hθ is associated with some ω =
f−1(hθ, d). Assuming that the observation of d does not itself influence the
probability of ω, meaning that P (ω|d) = P (ω) we can therefore write

P (Hθ|d) = P (f−1(Hθ, d)) = P (ω). (29)

This means that after observing d we can transfer the probability distribution
over ω to Hθ according to the function f−1.

12.1.2 Aiding Fiducial Inference with Networks

We now turn to the use of networks in aiding fiducial inference. The natural
suggestion is to consider cases in which there are many different statistical pa-
rameters θj in the model, and equally many observed variables Dj that may be
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used to perform fiducial arguments. We may then employ independence rela-
tions that obtain between the parameters and the data to speed up the fiducial
inference.

Example 12.1 Consider hypotheses Hθ determined by two variables, θ = 〈θ1, θ2〉,
stochastic elements ω = 〈ω1, ω2〉, and two propositions D1 and D2 representing
the data. Say that we have a number of independence relations between these
variables and data sets:

P (D1 ∧D2|Hθ ∧ ω) = P (D1|Hθ1 ∧ ω1)P (D2|Hθ1 ∧Hθ2 ∧ ω2), (30)
P (Hθ) = P (Hθ1)P (Hθ2), (31)
P (ω) = P (ω1)P (ω2). (32)

Finally, we have smoothly invertible functional relations f(Hθ1 , ω1) = D1 and
fθ1(Hθ2 , ω2) = D2, meaning that for each fixed value of θ1 the function fθ1 is
smoothly invertible. The corresponding network is depicted in Figure 14.

D1

D2

ω1

ω2

Hθ1

Hθ2

Figure 14: A network representing the conditional independencies between Hθ, ω and
D as expressed in Equations (30) to (32).

We first derive a fiducial probability P (Hθ1 |d1), whereby we assume that we do
not yet have knowledge of D2 or Hθ2 . After that we derive a fiducial probability
for Hθ2 from d2, by first computing a fiducial probability over Hθ2 for each value
of θ1 separately. We then use the law of total probability to arrive at P (Hθ2 |d2).

This is a version of the so-called step-by-step method for the fiducial argument.
See Seidenfeld [125]. The method was devised by Fisher for deriving the fiducial
probability over statistical hypotheses characterised by more than one parame-
ter. We can easily generalise the application of networks to step-by-step fiducial
inference for larger numbers of statistical parameters, data sets, and stochastic
elements.

Algorithm 12.2 Construction of a network for fiducial inference over more
than one statistical parameter.

Input: The following assumptions to run the step-by-step fiducial argument.

1. A sample space ΩD involving propositional variablesD = {D1, . . . DN},
a model ΩH of hypotheses Hθ with θ = 〈θ1, . . . , θN 〉, and a space of
stochastic elements ΩW = 〈ω1, . . . ωN 〉.

2. Smoothly invertible functional relations fSjj (Hθj , ωj) = Dj in which
Sj ⊆ {θj′ : j′ < j}, such that step-by-step fiducial inference can be
supported. The sets Sj determine which hypotheses need to be fixed
for the functional relations fSjj to be smoothly invertible.

82



3. A set of independence relations I among the marginal probabilities
P (Hθj ) of the hypotheses. Next to P (D1|Hθ) = P (D1|Hθ1), this set
must include the following independence relations for each j > 1:

P (Dj ∧Dj−1|Hθ) = P

Dj−1|
∧

j′∈Sj−1

Hθj′

P

Dj |
∧
j′∈Sj

Hθj′

 ,

P (Hθ) =
∏
j

P (Hθj ),

P (ω) =
∏
j

P (ωj),

Construction of the network: run Algorithm 9.1 with the indepen-
dence relations I to arrive at a network for fiducial inference.

Output: a network structure in which fiducial inference can be performed.

It must be conceded that the algorithm for setting up a network for fiducial
inference requires a lot of input. This is because the fiducial argument itself can
only be run under fairly specific circumstances. Still, once the network is built,
it will structure and possibly simplify the calculation of fiducial probability. The
idea is again that once the network has been built, computation is much less
costly.

12.1.3 Trouble with step-by-step fiducial probability

As already indicated at the start of this section, fiducial probabilities are con-
troversial, and this is all the more so for the step-by-step procedure. We explain
briefly why we recommend caution in the application of the step-by-step fiducial
argument.

Returning to the example, note that we can only apply the fiducial argument
on the condition that, in the absence of knowledge about Hθ2 , the data D1 in-
deed allow for transferring the probability assignment over ω1 to the hypotheses
Hθ1 . Now it seems that this possibility is guaranteed by the use of the smoothly
invertible functional relation f(Hθ1 , ω1) = D1. But there is something a bit
awkward about the assumption of the absence of knowledge about Hθ2 and the
use of the function f , which is brought out in Seidenfeld [124].

Imagine that we do have some fixed probability assignment P (Hθ2) before
we apply the fiducial argument to derive P (Hθ1) from d1. Now consider the
graph in Figure 14. From this graph we can deduce that if there is some defi-
nite probability assignment P (Hθ2), learning about D2 will be probabilistically
relevant to the probability of Hθ1 . Of course, there are special cases of prob-
ability assignments P (Hθ1) for which the data on D2 come out as irrelevant
anyway, but this is not the case in general. Hence, by the assumption of a par-
ticular distribution P (Hθ1) we might destroy the smoothly invertible relation
f(Hθ1 , ω1) = D1 and replace it with f(Hθ1 , ω) = D, in which case the fiducial
argument cannot be run.

This makes step-by-step fiducial inference more problematic than its simple
and direct application. Moreover, there is no suggestion that network structures
can help to clear up the problem. The network of §12.1.1 provides a particular
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perspective on the fiducial argument, but this perspective is not particularly
helpful in framing the difficulties associated with the step-by-step procedure.
Whether a more elaborate representation of the functional relations in terms of
networks would do better on this count is a question for further research.

12.2 Evidential Probability and the Fiducial Argument

The novelty of the fiducial argument is to treat indirect inference as a form
of direct inference, and the approach that EP takes is to use knowledge about
the sample and the sampling procedure to eliminate those reference statistics
from which we have reason to believe are not representative. Since there is
no network structure for first-order EP, the role that absence of knowledge
plays in the fiducial argument is viewed not as an awkward feature of Fisher’s
argument but rather a central feature of statistical inference as such. We noted
in §5.1.3 the clash between EP’s logic of probabilities and probabilistic logic,
and with it the prospects of viewing classical statistical inference in terms of a
probabilistic logic. But the view does give a picture of statistical inference as a
form of uncertain inference, and we may use the machinery developed in §11 to
calculate fiducial probabilities.

12.2.1 First-order EP and the Fiducial Argument

To interpret
ϕX1

1 , . . . , ϕXnn |≈ ψ?,

as an EP reconstruction of fiducial inference, we replace |≈ by |m of first-order
EP-entailment and interpret the premises to include logical information and
direct inference statements, just as we do §11, and add a selection function
f(χ,U(x)[x/ω]) ≥ λ that restricts the set of relevant direct inference statements
to just those that are rationally representative of χ to at least degree λ.

As we observed in §11, first-order EP does not admit the use of the common
machinery of §8.2. We instead have Algorithm 11.1 to calculate first-order EP
assignments. Thus there is no inferential machinery called upon apart from
what is provided by first-order EP.

As we observed in §5.3, this approach does not resolve the controversy sur-
rounding the fiducial argument but instead pinpoints the where the controversy
lies, which is how to restrict (or, rather, rule out) otherwise applicable refer-
ence statistics. Viewed in terms of a first-order EP inference, this restriction
will involve logical formulas in our knowledge base that fix a subset of relevant
statistics to accept as rationally representative for a particular assignment [l, u]
to χ.

12.2.2 Second-order EP and the Fiducial Argument

The first-order question concerns the assignment of evidential probability to
a statement under the restriction of the pair (f, λ), where f is the ‘rationally-
representative to degree λ’ selection function f(χ,U(x)[x/ω]) ≥ λ on the relevant
statistics for a sentence χ. The second-order question concerns the proportion
of overlap among all possible combinations of evidence for ψ occurring in Γδ
under the restriction (f, λ).
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The second-order EP probability of ψ restricted by (f, λ) on the knowledge
base Γδ = {ϕX1

1 , . . . , ϕXnn } is

P (ψ) =
1∑

e1,...,em=0

P (ψ|ϕe11 , . . . , ϕ
em
m ) · P (ϕe11 , . . . ϕ

em
m ),

where
∑1
e1,...,em=0 P (ψ|ϕe11 , . . . , ϕ

em
m ) sums over all possible evidence given the

restriction imposed by (f, λ) for ψ with respect to Γδ. We replace P (ϕe11 , . . . ϕ
em
m )

by
m∏
1

P (ϕeii ),

where P (ϕi) ∈ [λ, 1], λ = 1− δ.
Once (f, λ) picks {ϕX1

1 , . . . , ϕXmm } from {ϕX1
1 , . . . , ϕXnn }, the algorithm for

calculating the second-order EP probability for a fiducial argument is just the
algorithm for second-order EP, Algorithm 11.2.

13 Networks for Bayesian Statistical Inference

The essential property of Bayesian statistical inference, as introduced in §6, is
that the probability space includes both the sample space ΩD, consisting of
propositional variables Di, and the space of hypotheses ΩH . In the semantics
of Bayesian statistical inference, the premises include a prior over hypotheses
P (Hj) and the likelihoods of the hypotheses P (Di|Hj). The conclusion is a
posterior over hypotheses P (Hj |des) for some observed assignment des to the Di,
where e is a vector of assignments and s is a corresponding vector of values for
i. In the following we will present two ways in which credal networks may be
employed in this inference. The first presents a computational improvement of
the inferences as such, while the second supplements the inference with further
tools, deriving from the common machinery of §8.

13.1 Credal Networks as Statistical Hypotheses

We first spell out how a credal network can be related to a statistical model, i.e.
a set of statistical hypotheses. Recall that a credal network is associated with a
credal set, a set of probability functions over some designated set of variables.
Hence a credal set may be viewed as a statistical model: each element of the
credal set is a probability function over the set of variables, and this probability
may be read as a likelihood of some hypothesis for observations of valuations
of the network. Conversely, any statistical model concerns inter-related trials
of some specific set of variables, so that we can identify any statistical model
with a credal network containing these variables. Here we deal with non-causal
statistical hypotheses; [94, Chapter 4] argues that credal nets can also be used
to represent causal hypotheses.

13.1.1 Construction of the Credal Network

To construct the credal network that represents a statistical model, we first list
all the independence relations that obtain between the variables in the sample
space ΩD.
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Example 13.1 Consider subsequent observations, at times i, of three binary
variables Vi = {Ai, Bi, Ci}. The independence relations I are as follows:

∀i :Ai ⊥⊥ Bi|Ci−1,

∀i′ 6= i− 1 :Ai ⊥⊥ Ci′ , Bi ⊥⊥ Ci′ ,
∀i′ 6= i : Ci ⊥⊥ Ci′ , Ai ⊥⊥ Ai′ , Bi ⊥⊥ Bi′ , Ai ⊥⊥ Bi′ , Bi ⊥⊥ Bi′ .

To determine the credal network, we run the algorithm of section §9.2, which
also allows us to include further constraints ϕXii on the probability assignments
of the variables.

Algorithm 13.2 Construction of a credal network for the semantics of Bayesian
statistical inference, based on a given model of statistical hypotheses.

Input: a model ΩH of statistical hypotheses Hθ, a sample space ΩD concerning
a set V = {A1, . . . , AM} of propositional variables, and further premises
ϕX1

1 , . . . , ϕXNN involving those variables.

1. Derivation of the independence relations: using the (conditional)
independence relations inherent to the likelihoods of all the Hθ

(a) If P (Ai ∧Aj | Hθ) = P (Ai | Hθ)P (Aj | Hθ), add Ai ⊥⊥ Aj to the set
of independence constraints I.

(b) If P (Ai∧Aj |
∧
k Ak∧Hθ) = P (Aj |

∧
k Ak∧Hθ)P (Aj |

∧
k Ak∧Hθ),

add Ai ⊥⊥ Aj |
∧
k Ak to the set of independence constraints I.

2. Running Algorithm 9.1: based on the set I of independence relations
and the premises ϕX1

1 , . . . , ϕXNN .

Output: a graph G and a set of extremal points vi in terms of the network
coordinates.

As the corresponding credal set we take the complete extension of the network.
Under this extension, the credal set is basically a set of Bayesian networks that
all have the given credal network as their graph. The fact that the statistical
model is thus associated with a Bayesian network containing free coordinates
will turn out to be useful in learning from data.

Now that we have identified credal sets as statistical models, the notion of a
second-order probability assignment falls into place quite naturally. The second-
order probability assignment takes the members of the credal set as arguments.
Any credal set may be captured by a second-order probability over probability
functions of the variables that is non-zero only at those functions belonging to
the credal set. A uniform distribution is perhaps the most natural choice, but
other shapes of the second-order probability are possible too.

Example 13.3 (continued) Recall example Example 13.1. Even if we restrict
attention to Markov processes with these variables, a statistical hypothesis on
them is determined by 23(23 − 1) = 56 probabilities for the transitions between
valuations of the variables. So the corresponding statistical model Θ has a coor-
dinate system with 56 coordinates. Now consider the network that captures the
independence relations.
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Ai BiCi−1

Figure 15: The graph capturing the independence relations among the propositional
variables Ai, Bi, and Ci. This graph holds for each and every value of i.

The complete extension of this network consists of the probability functions ar-
rived at by filling in the probabilities on the nodes and edges. Again each of these
functions is associated with a statistical hypothesis, denoted Hη. The coordinate
system of the corresponding model Θnet is a vector η = 〈γ, α0, β0, α1, β1〉, where

P (ci|Hη) = γ,

P (ai+1|cki ∧Hη) = αk,

P (bi+1|cki ∧Hη) = βk.

The space Θnet is a strict subset of the space Θ. The above credal network may
be characterised by a prior probability assignment that is nonzero only on this
subset.

Against the background of a statistical model as the complete extension of
a credal network, we first discuss Bayesian statistical inference as it has been
presented in the foregoing. For a more complete example of the application
of credal networks in the context of Bayesian inference over both latent and
observable variables, see [120]. Section §13.2 concerns an extension of Bayesian
statistical inferences on this basis.

13.1.2 Computational Advantages of Using the Credal Network

We consider inferences to do with adapting the second-order probability assign-
ment over the credal set according to Bayesian statistical inference, on the basis
of repeated observations of the variables.

One important consequence of viewing the statistical model as a credal net-
work is that it allows us to reduce the dimensions of the statistical model, as the
above example illustrates: the credal network restricts the space of allowed pa-
rameter values from dim(Θ) = 56 to dim(Θnet) = 5 dimensions. This reduction
in the dimensions of the model can entail major reductions in computational
load, parallel to the reduction in computational load effected by using Bayesian
networks when dealing with single probability assignments.

Another important consequence concerns the coordinate system of the sta-
tistical model. Note that by replacing the product of simplexes Θ with the
space Θnet, we are not only reducing the number of coordinates, but we are also
availing ourselves of coordinates that are orthogonal to each other. If we want
to update the probability assignment over the model with the observation of one
variable, while the observations of other variables are unknown, this can more
easily be captured analytically in the coordinate system deriving from the credal
network. In particular, if we start out with a prior probability density over the
model that is factorisable, P (Hη) = fC(γ)fA0(α0)fB0(β0)fA1(α1)fB1(β1), up-
dates on the variables run entirely separately. So if we find the assignment ci
after some sequence of particular observations d, we need only adapt the density
factor fC(γ|d) to fC(γ|d∧ci). The other factors are invariant under this update.
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This computational advantage shows up in the predictive probabilities that
derive from the posterior probability assignments over the model. As indicated
in §6, if the probability density over statistical hypotheses is a Dirichlet dis-
tribution, then the predictions for valuations of the separate network variables
are Carnapian prediction rules. Consequently, entire network valuations are
predicted according to products of such prediction rules, as is worked out in
more detail in Romeijn [119]. There it is also explained that the use of the
coordinate system deriving from the network helps us to define and motivate
alternative prior probability assignments over the model, allowing us to capture
variations in inductive influences among valuations of the network. In Romeijn
[118] these insights are generalised to prior probability densities outside the
family of Dirichlet priors.

In sum, credal networks can be used to improve computation in Bayesian
statistical inferences. However, there is not a direct application of the common
inference machinery of §8 to this use of credal networks. Rather the present us-
age remains internal to the inference machinery provided by Bayesian statistics
itself, which employs probability density functions over the credal set. In the re-
mainder of this section we turn to an application of credal networks that directly
employs the common inference machinery. This involves a genuine extension of
Bayesian statistical inference itself.

13.2 Extending Statistical Inference with Credal Networks

In this section we include the statistical hypotheses in a credal network repre-
sentation, and investigate some of the evidential and logical relations between
hypotheses and observed variables.

13.2.1 Interval-Valued Likelihoods

In the foregoing we have associated statistical hypotheses with probability as-
signments in the credal set: every hypothesis is associated with a single such
likelihood function, and thus with a single probability assignment over the ob-
servable variables. But we may also add the hypotheses as nodes in the network.

Example 13.4 Consider a credal network consisting of a hypothesis node Hj

with j ∈ {0, 1} and a large number of instantiation nodes of the propositional
variables Ci, labelled with i.

Hj

C1 C2 Ci
. . . . . .

Figure 16: A graph containing the statistical hypothesis Hj as the top node. Condi-
tional on the hypothesis, the propositional variables Ci for i = 1, 2, . . . are independent.

These instantiation variables are independent of each other conditional on Hj,
and each value j may be associated with a conditional probability of each of the
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instantiations. These conditional probability assignments can be filled in on the
edges leading from the hypothesis node Hj to the separate instantiations of Ci.

The idea to include a hypothesis in a credal network leads quite naturally
to the idea of interval-valued likelihoods. That is, we may assign a probability
interval to the edges connecting a statistical hypothesis with the data. Illus-
trating this by the above example, we replace the sharp probability values for
ci with

P (ci|H0) ∈ [0.3, 0.7], (33)
P (ci|H1) ∈ [0.6, 0.8]. (34)

In words, this expresses that the statistical hypotheses are not exactly clear
on the probability of ct, although they do differ on it. The use of this formal
possibility is in a sense complementary to the well-known method of Jeffrey
conditioning. Jeffrey conditioning tells us what to do in case we are not quite
sure what the evidence we gathered is, while we are sure how the evidence, once
made precise, bears on the hypotheses; this is expressed in the condition of rigid-
ity. The interval-valued likelihoods, by contrast, provide us with a technique to
update probability assignments in case we know exactly what evidence we have
gathered, while we are not sure how this evidence bears on the hypotheses at
issue.

The idea of interval-valued likelihoods is not new; it has already been dealt
with by Halpern and Pucella [58]. There the updates of probability assignments
are carried out using Dempster’s rule of combination. The advantage of pre-
senting the idea in the context of Schema (1) is that we can directly use the
common inference machinery. Starting with an unknown probability for both
Hj , for example P (Hj) ∈ [0, 1], we may input the instantiations of several ci, to
arrive at new interval-valued probability assignments for both hypotheses. The
common machinery of credal networks, as worked out in §8, can thus be applied
directly to the statistical setting.

Algorithm 13.5 Construction of a credal network for Bayesian statistical in-
ference in which the statistical hypotheses are included.

Input: a finite set of credal sets Kj for j = 1, . . . N , each based on a given set of
propositional variables V = {A1, . . . AM}, independence relations I, and
premises ϕXii , such that the sets are all associated with a unique credal
network G.

1. Addition of hypotheses nodes: add the node Hj with possible valua-
tions j = 1, . . . N , and connect the node Hj with each variable Aj in the
graph G.

2. Fixing the likelihoods: associate each credal set Kj with a statistical
hypothesis Hj , by setting the credal set for the variables V to Kj for the
valuation j of the hypothesis node Hj .

Output: a statistical model in which each hypothesis Hj is associated with a
credal set over the variables V .
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We can then use the common machinery to calculate the interval-valued prob-
abilities that attach to the respective statistical hypotheses Hj . We think that
this can be useful to both statisticians and working scientists. It frequently
happens that the bearing of some piece of evidence on the available hypotheses
is somehow vague.

13.2.2 Logically Complex Statements with Statistical Hypotheses

The idea to include hypotheses in the credal network invites a further application
that derives from the standard semantics.

Taken by themselves, second-order probabilities over statistical hypotheses
allow one to infer various useful quantities, such as expectation values and pre-
dictions. By including the statistical hypotheses in the credal network, we can
also infer probability assignments over logically complex propositions concern-
ing statistical hypotheses, these inferred quantities, and the data. Importantly,
it allows us to assess the logical combination of statistical hypotheses from anal-
yses concerning overlapping sets of propositional variables.

As briefly discussed at the end of §6, we must be careful in interpreting the
resulting probability assignments over logically complex propositions involving
hypotheses, which are typically interval-valued. The interval-valued assignments
to such propositions cannot be interpreted as credence intervals: they pertain to
a single statistical hypothesis and not to a range of values of statistical parame-
ters. The shape of the second-order probability, as introduced in the preceding
section, tells us a lot more about the uncertainty over the probabilities assigned
to variables, and such uncertainty over probabilities is simply not expressed in
the interval probabilities of credal networks.

Statisticians may nevertheless make good use of credal networks that include
statistical hypotheses. Often enough the proposition of interest in a scientific
enquiry is logically complex, and very often the background knowledge contains
logically complex propositions. With the above ideas in place, Schema (1) pro-
vides a systematic way of dealing with such pieces of background knowledge.

14 Networks for Objective Bayesianism

According to the objective Bayesian semantics, ϕX1
1 , ϕX2

2 , . . . , ϕXnn |≈ ψY if and
only if all the probability functions that satisfy the constraints imposed by the
premisses and that are otherwise maximally equivocal, also satisfy the conclu-
sion.

As outlined in §7, the left-hand side is interpreted as the set of directly trans-
ferred constraints χ. One then determines the set P∗χ of probability functions
that satisfy maximally consistent subsets of χ and takes the convex closure [P∗χ]
of this set to yield the set E of probability functions compatible with the agent’s
epistemic background E . Note that since X1, . . . , Xn are closed intervals, Pχ is
already closed and convex. Assuming that the premisses ϕX1

1 , ϕX2
2 , . . . , ϕXnn are

consistent, E = [P∗χ] = Pχ. Hence under the assumption of consistency we can
simply consider maximally equivocal probability functions from all those that
satisfy the premisses.
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14.1 Propositional Languages

Suppose further that ϕ1, . . . , ϕn, ψ are sentences of a finite propositional lan-
guage L with propositional variables A1, . . . , An. Then entropy is a measure
of the degree to which a probability function equivocates and there is a unique
entropy maximiser. In principle then we consider only a single model of the
premises—the probability function that has maximum entropy from all those
that satisfy the premises—and see whether that model satisfies the conclusion.
This model can be represented by a Bayesian network, and one can use this net-
work to calculate the probability Y to attach to the conclusion sentence ψ. A
Bayesian network that represents a probability function that represents degrees
of belief that are deemed rational according to objective Bayesian epistemol-
ogy is called an objective Bayesian network [148]. In our scenario an objective
Bayesian network can be constructed as follows.

Algorithm 14.1 Construction of an objective Bayesian network—a Bayesian
network for the objective Bayesian semantics—on a propositional language.

Input: ϕX1
1 , . . . , ϕXnn , ψ where ϕ1, . . . , ϕn, ψ are sentences of a finite proposi-

tional language.

1. Construction of the graph:

(a) Construct an undirected constraint graph G by taking the proposi-
tional variables occurring in ϕ1, . . . , ϕn, ψ as nodes and connecting
two variables with an edge if they occur in the same premise ϕi.

(b) Transform G into a DAG H:

i. Triangulate G to give GT .
ii. Reorder the variables according to maximum cardinality search.
iii. Let D1, . . . , Dl be the cliques of GT , ordered according to highest

labelled vertex.
iv. Let Ej = Dj ∩ (

⋃j−1
i=1 Di) and Fj = Dj\Ej , for j = 1, . . . , l.

v. Construct a directed acyclic graph H by taking propositional
variables as nodes, and
• Add an arrow from each vertex in Ej to each vertex in Fj ,

for j = 1, . . . , l.
• Add further arrows, from lower numbered variables to higher

numbered variables, to ensure that there is an arrow between
each pair of vertices in Dj , j = 1, . . . , l,.

2. Derivation of the conditional probability functions: Find the values
of P (aei | parei ) that maximise the total entropy

H = −
n∑
i=1

∑
e∈{0,1}|Anc′

i
|

 ∏
Aj∈Anc′i

P (aej |parej)

 logP (aei |parei ),

where Anc′i is the set consisting of Ai and its ancestors in H. (Here
standard numerical techniques or Lagrange multiplier methods can be
used.)
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Figure 17: Constraint graph.
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Figure 18: Graph satisfying the Markov condition.

Output: H, {P (aei | parei ) : i = 1, . . . , n, e ∈ {0, 1}n}
The output of this algorithm is provably a Bayesian network representation of
the maximum entropy probability function P , from all those that satisfy the
input [147, §5.7]. This objective Bayesian network can be used to calculate
Y = P (ψ), as indicated in §8.

Example 14.2 Suppose we have a question of the form:

a1 ∧ ¬a2
[0.8,0.9], (¬a4 ∨ a3)→ a2

0.2
, a5 ∨ a3

[0.3,0.6], a4
0.7 |≈ a5 → a1

?

This is short for the following question: given that a1 ∧ ¬a2 has probability
between 0.8 and 0.9 inclusive, (¬a4 ∨ a3) → a2 has probability 0.2, a5 ∨ a3 has
probability in [0.3, 0.6] and a4 has probability 0.7, what probability should a5 → a1

have? As explained in §7.3, this question can be given an objective Bayesian
interpretation: supposing the agent’s evidence imposes the constraints P (a1 ∧
¬a2) ∈ [0.8, 0.9], P ((¬a4∨a3)→ a2) = 0.2, and P (a5∨a3) ∈ [0.3, 0.6], P (a4) =
0.7, how strongly should she believe a5 → a1? By means of Algorithm 14.1, an
objective Bayesian network can be constructed to answer this question. First
construct undirected constraint graph, Figure 17, by linking variables that occur
in the same constraint. Next, follow the algorithm to transform the undirected
graph into a directed acyclic graph satisfying the Markov condition, such as
Figure 18. The third step is to maximise entropy to determine the probability
distribution of each variable conditional on its parents in the directed graph. This
yields the objective Bayesian network. Finally we use the network to calculate
the probability of the conclusion: here we apply the common machinery of §8.2.
In fact in this simple example calculating the probability of the conclusion is
very straightforward:

P (a5 → a1) = P (¬a5 ∧ a1) + P (a5 ∧ a1) + P (¬a5 ∧ ¬a1)
= P (a1) + P (¬a5|¬a1)(1− P (a1))

Thus we must calculate P (a1) and P (¬a5|¬a1) from the network.
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14.2 Predicate Languages

If ϕ1, . . . , ϕn, ψ are sentences of a predicate language, a similar procedure can
be applied.

The simplest case is that in which the constraints imposed by the left-hand
side of the fundamental question, ϕX1

1 , ϕX2
2 , . . . , ϕXnn , constrain finitely many

atomic sentences (sentences of the form Ut). This occurs for example when the
language is finite (i.e., there are finitely many constant, predicate, relation and
function symbols), or when the sentences ϕ1, . . . , ϕn, ψ are all quantifier-free.
Let a1, a2, . . . , ak be the atomic sentences constrained by ϕX1

1 , ϕX2
2 , . . . , ϕXnn .

Then we construct the objective Bayesian network exactly as in Algorithm 14.1,
taking variables corresponding to these atomic sentences as nodes in the graph.
(As pointed out in §7, in this finite case minimising distance to the equivocator
is equivalent to maximising entropy.) The objective Bayesian network can then
be used to calculate P (ψ) as discussed in §8.

In the more general situation—with an infinite predicate language and ar-
bitrary sentential constraints—steps need to be taken to ensure the Bayesian
network remains finite (in order to use the network for computation). In this
case we can use the following algorithm:

Algorithm 14.3 Construction of an objective Bayesian network on a predicate
language.

Input: ϕX1
1 , . . . , ϕXnn , ψ where ϕ1, . . . , ϕn, ψ are sentences of a predicate lan-

guage and ψ is quantifier-free.

1. Construction of the graph:

(a) Instantiate all quantified premise sentences as follows. Let t1, . . . , tm
be the constant symbols appearing in ϕ1, . . . , ϕn, ψ. For a sentence ϕ
let |ϕ| be the number of distinct variables occurring in ϕ. For a tuple
t of |ϕi| constants selected from t1, . . . , tm, let ϕi/t be the result of
substituting each distinct variable in ϕi for the corresponding con-
stant in t. (If ϕi is quantifier-free, |ϕi| = 0, take ϕi/t to be ϕi.) For
i = 1, . . . , n let Φi be the set of all such instantiations, Φi = {ϕi/t :
some t}.

(b) Construct an undirected constraint graph G:

i. Let a1, . . . , ak be the atomic sentences occurring in Φ1, . . . ,Φn
and ψ. Construct binary variables A1, . . . , Ak such that each Ai
has ai and ¬ai as possible assignments. Take these variables as
the nodes of G.

ii. Connect two variables Ai and Aj with an edge if ai and aj occur
in sentences in the same Φk (i.e., if they occur in instances of the
same premise sentence ϕk).

(c) Transform G into a DAG H:

i. Triangulate G to give GT .
ii. Reorder the variables according to maximum cardinality search.
iii. Let D1, . . . , Dl be the cliques of GT , ordered according to highest

labelled vertex.
iv. Let Ej = Dj ∩ (

⋃j−1
i=1 Di) and Fj = Dj\Ej , for j = 1, . . . , l.
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A1 A2 A3 A1 A2 A3

Figure 19: Constraint graph (left) and graph satisfying the Markov Condition (right).

v. Construct a directed acyclic graphH by taking variablesA1, . . . , AK
as nodes, and
• Add an arrow from each vertex in Ej to each vertex in Fj ,

for j = 1, . . . , l.
• Add further arrows, from lower numbered variables to higher

numbered variables, to ensure that there is an arrow between
each pair of vertices in Dj , j = 1, . . . , l,.

2. Derivation of the conditional probability functions: Find the values
of P (aei | parei ) induced by a function P on the predicate language that
satisfies the input constraints and is closest to the equivocator.

Output: H, {P (aei | parei ) : i = 1, . . . , n, e ∈ {0, 1}n}

That the graph represents the independencies of the function P that satisfies the
constraints and is closest to the equivocator follows for the same reasons as in
the case of Algorithm 14.1 [147, §5.7]. As in the case of Algorithm 14.1 we leave
the methods for filling in the conditional probability functions unspecified: what
is important for the purposes of this paper is the dimension reduction offered
by representing P by a Bayesian network factorisation of P with respect to H.

Here is a simple example.

Example 14.4 Suppose we have a question of the form:

∀x(Ux→ V x)3/5
,∀x(V x→Wx)3/4

, Ut[0.8,1] |≈Wt?

By means of Algorithm 14.3, an objective Bayesian network can be constructed
to answer this question. There is only one constant symbol so instantiating the
constraint sentences gives Φ1 = {Ut → V t},Φ2 = {V t → Wt},Φ3 = {Ut}.
Let A1 take assignments Ut (assignment a1) and ¬Ut (assignment ā1), A2 take
assignments Vt (a2) and ¬V t (ā2) and A3 take assignments Wt (a3) and ¬Wt
(ā3). Then G and H are depicted in Figure 19. It is not hard to see that
P (a1) = 4/5, P (a2|a1) = 3/4, P (a2|¬a1) = 1/2, P (a3|a2) = 5/6, P (a3|¬a2) =
1/2; together with H, these probabilities yield a Bayesian network. The common
machinery of §8.2 then gives us P (a3) = P (Wt) = 11/15 as an answer to our
question.

15 Conclusion

In this paper we have argued in favour of two basic claims:

Part I: a unifying framework for probabilistic logic can be constructed around
what we have called the Fundamental Question of Probabilistic Logic, or
simply Schema (1);
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Part II: probabilistic networks can provide a calculus for probabilistic logic—
in particular they can be used to provide answers to the fundamental
question.

These two claims constitute what we call the progicnet programme, and offer
a means of unifying various approaches to combining probability and logic in a
way that seems promising for practical applications.

Because of this twin focus and the programmatic nature of this paper, we
have neither been able to address all concerns about probabilistic logics nor
address concerns about the various semantics discussed here. Many of these
concerns (too many to list here!) are discussed in the supporting references.
There are of course possible semantics for the fundamental question other than
those considered here; we hope that this paper will encourage research into how
well these fit into the progicnet programme.

One locus for future research is the question of how answers to the funda-
mental question might influence decision making. Indeed the wider question
of the relationship between probabilistic logic and decision theory has received
scant attention in the literature. However this is clearly a crucial question both
from a computational and from a philosophical point of view. If resources are
bounded then certain queries in probabilistic logic will be most prudent as a
basis for decision—but which? If these queries are to be used as a basis for
decision then certain semantics may be more viable than others—but which?
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