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Abstract

Classical modal logics, based on the neighborhood semantics of Scott and Montague, provide a
generalization of the familiar normal systems based on Kripke semantics. This paper defines AGM
revision operators on several first-order monotonic modal correspondents, where each first-order
correspondence language is defined by Marc Pauly’s version of the van Benthem characterization
theorem for monotone modal logic. A revision problem expressed in a monotone modal system is
translated into first-order logic, the revision is performed, and the new belief set is translated back
to the original modal system. An example is provided for the logic of Risky Knowledge that uses
modal AGM contraction to construct counter-factual evidence sets in order to investigate robustness
of a probability assignment given some evidence set. A proof of correctness is given.

1 Introduction

Within AGM Gärdenfors (1988), consistency maintenance is done within a supra-classical propositional
logic. But the reliance on classical consistency paired with a propositional language presents a challenge
for exporting AGM revision to non-classical logics in general, and to modal logic in particular.

A general technique for solving this problem is to translate a non-classical logic into classical logic,
together with a specification of consistency particular to the non-classical logic, perform the operation of
revision on this translation within classical logic, then translate the result back into the non-classical logic
we started with Gabbay et al. (2008). In the case of normal modal logic, both the modal language and
the semantic structure must be translated into first-order logic, and this translation for common normal
systems will rely upon well-known frame-theoretic properties, expressed in first-order logic, of modally
defined classes of (finite) Kripke frames Goldblatt (1993).

But there is a problem extending this technique to classical modal logics Chellas (1980), because
there is generally no direct correspondence between neighborhood frames and first-order logic. This
paper proposes to solve this problem by adapting Marc Pauly’s Hansen (2003) technique of first simulat-
ing neighborhood structures by polymodal Kripke structures, then define a correspondence to first-order
logic from the polymodal Kripke semantics wherein AGM revision can be defined.

In modal logic the technique of simulation was first used to construct counter-examples within poly-
modal modal logic to export back to monomodal systems of interest Thomason (1974, 1975). More
recently the technique has been used to study the relationship between neighborhood semantics and
Kripke’s relational semantics, with a particular focus on supplemented neighborhood models Gasquet
and Herzig (1996), Kracht and Wolter (1999), Hansen (2003). Supplemented neighborhood models
underpin a variety of non-additive, monotone modal logics appearing in knowledge representation for-
malisms, including Game Logic Parikh (1985), Concurrent Propositional Dynamic Logic Goldblatt
(1992), Alternating-time logic Alur et al. (1992), Risky Knowledge Kyburg and Teng (2002), and Coali-
tion Logic Pauly (2002). Non-monotone classical modal logics have also been pressed into service,
including Local Reasoning Fagin and Halpern (1988), and the logic of Only Knowing Humberstone
(1987), Levesque (1990), which are based on the Inaccessible Worlds semantics of Humberstone (1983).

In addition to discovering properties of a logic by studying its simulation within a well-understood
system, the techniques of simulation theory together with correspondence theory may be used to bring
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new capabilities to a classical modal logic. AGM belief revision is but one example, which is the subject
of this paper.

Early work has focused on supplying a normal modal semantics for AGM Boutilier (1992). More
recent work in modal belief revision focuses on specifically tailored classical modal logics, particularly
dynamic epistemic logic van Benthem (2007), van Eijck (2009), and polymodal normal logics, such as
branching time temporal logic Bonanno (2009). Each addresses particular issues that arise—principally
updating and common knowledge, in the case of the former, and the interaction of temporal and epis-
temic operators on the standard interpretation in the latter. Also, Enqvist (2009) has focused on revising
interrogative questions. But, as we see above, there are many interpretations of classical modal logics
within knowledge representation, and one might like instead to have a general strategy for supplying
AGM revision to systems of classical modal logic. The present paper aims to provide such a strategy.

2 Classical Modal Logic

To begin, we highlight the difference between neighborhood structures and standard Kripke structures.
Whereas Kripke frames are characterized by a binary accessibility relation defined over a set of worlds,
a neighborhood frame for the propositional modal language L∇(Φ) is a pair F = (W,N ) where W is a
non-empty set of worlds, and N : W 7→℘(℘(W )) is a neighborhood function, i.e. N (w)⊆℘(W ), for
each w ∈W . If F = (W,N ) is a neighborhood frame, Φ a countable set of propositional variables, and
V : Φ 7→℘(W ) is a valuation on F, then M = (W,N ,V ) is a neighborhood model based on F.

The satisfiability conditions for non-modal propositional formulas on neighborhood models are anal-
ogous to Kripke models, but modal necessity (∇ϕ) and possibility (

∇

ϕ) statements on neighborhood
models are different. Like the normal modal logic (K) and its extensions, classical modal logics are
based on the classical system (E) and the meaning of necessity statements in different classical systems
is determined by the properties of neighborhood frames just as the meaning of necessity statements in
different normal systems is determined by the properties of a Kripke frame. That said, there are four
important classes of neighborhood models (minimal, supplemented, quasi-filters, augmented) that deter-
mine four modal systems (classical, monotone, regular, normal). The differences between these models
can be reflected by the truth conditions for (∇ϕ). Let M = (W,N ,V ) be a neighborhood model, w be
a world in W , X a set of worlds, and p ∈Φ. Then:

Common Core

• M
w ⊥ iff never

• M
w p iff w ∈V (p), for p ∈Φ

• 6M
w p iff w 6∈V (p)

• M
w ϕ ∨ψ iff w ∈V (ϕ) or w ∈V (ψ)

• M
w

∇

ϕ iff M
w ¬∇¬ϕ

Minimal Models, ‘e’:

• Me

w ∇ϕ iff {w∗| Me

w∗ ϕ} ∈N (w)

• Me

w

∇

ϕ iff {W \{w∗| Me

w∗ ϕ}} 6∈N (w)

Supplemented Models, ‘m’:

2



• Mm

w ∇ϕ iff (∃X ∈N (w),∀w∗∈ X) : Mm

w∗ ϕ

• Mm

w

∇

ϕ iff (∀X ∈N (w),∃w∗∈ X) : Mm

w∗ ϕ

Quasi-filters, ‘r’:

• Mr

w ∇ϕ iff N (w) 6= { /0} and {{w∗| Mr

w∗ ϕ}}= N (w)

• Mr

w

∇

ϕ iff N (w) 6= { /0} and
{{W \{w∗| Mr

w∗ ϕ}}} 6= N (w)

Augmented, ‘k’:

• Mk

w ∇ϕ iff {{w∗| Mk

w∗ ϕ}}= N (w)

• Mk

w

∇

ϕ iff {{W \{w∗| Mk

w∗ ϕ}}} 6= N (w).

The following are classical modal schemata and frame properties. (More soon on their relationship.)
All instances of (N), (C), and (M) are theorems of any normal modal logic. However, none are theorems
of classical modal logic. All instances of (M) are theorems of monotone logics, and all instances of (M)
and (C) are theorems of regular logics.

To shorten notation, a neighborhood function N defines a map Nm : P(W ) 7→P(W ) such that
Nm(X) = {w∈W : X ∈N (w)}, so that Nm(V (ϕ)) =V (∇ϕ). Consider now the following modal schemas
and their corresponding neighborhood frame conditions.

(N) ∇> (n) ∀w ∈W : W ∈N (w)
(P) ¬∇⊥ (p) ∀w ∈W : /0 6∈N (w)
(C) ∇φ ∧∇ψ → ∇(φ ∧ψ) (c) ∀w ∈W, ∀X1,X2 ⊆W :

(X1 ∈N (w) & X2 ∈N (w))→ X1∩X2 ∈N (w).
(M) ∇(φ ∧ψ)→ ∇φ ∧∇ψ (m) ∀w ∈W, ∀X1,X2 ⊆W :

(X1 ⊆ X2 & X1 ∈N (w))→ X2 ∈N (w).
(D) ∇φ →

∇

φ (d) ∀x ∈W,∀X ⊆W : X ∈N (w)→−X 6∈N (w).
(T) ∇φ → φ (t) ∀w ∈W,∀X ⊆W : X ∈N (w)→ w ∈ X .
(B) φ → ∇

∇

φ (b) ∀x ∈W,∀X ⊆W :
w ∈ X →{W \{Nm(W \X)}} ∈N (w)

(4) ∇∇φ → ∇φ (iv) ∀w ∈W,∀X ,Y ⊆W :
(4′) ∇φ → ∇∇φ (iv′) ∀X ,Y ⊆W : X ∈N (w)→ Nm(X) ∈N (w).

(X ∈N (w) & ∀x ∈ X : Y ∈N (w))→ Y ∈N (w).
(5)

∇

φ → ∇

∇

φ (v) ∀x ∈W,∀X ⊆W :
X 6∈N (w)→{W \Nm(X)} ∈N (w).

Define (E) as

∇

ϕ ↔¬∇¬ϕ and consider the following inference rules.

(RE)
ϕ↔ψ

∇ϕ↔∇ψ
(RM)

ϕ→ψ

∇ϕ→∇ψ
(RR)

(ϕ1∧ϕ2)→ψ

(∇ϕ1∧∇ϕ2)→∇ψ

Classical modal systems contain (E) and are closed under (RE). Monotone modal systems are classical
but contain all instances of (M); equivalently, they contain (E) and are closed under (RM). Regular
modal systems are monotone but contain all instances of (C); equivalently, they contain (E) and are
closed under (RR). Normal modal systems are regular and contain all instances of (N).

There are eight classical logics defined by combinations of the schemata M, C, and N, including the
four just defined, each axiomatizable, determined by a class of finite neighborhood models, sound and
strongly complete, and decidable Chellas (1980).
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Figure 1: Basic systems of classical modal logic

3 Correspondence Languages

Recall the goal: to define AGM belief revision operators for systems of classical modal logic. The first
step of our strategy involves translating classical modal formulas and the relevant neighborhood semantic
structure into first-order logic. This section addresses the translation step by appealing to results from
modal simulation theory, which identifies a class of neighborhood frames with some multi-modal Kripke
frame, and correspondence theory, which here will characterize a polymodal Kripke frame by sentences
of first-order logic. This requires specifying three languages: L∇, a classical propositional monomodal
language; L3, a standard propositional polymodal language; and L 1

∇
, the final first-order translation

language corresponding to L∇. This technique does not cover all classical modal systems, but it does
cover many of them.

Let p ∈ Φ and pt be a unary modal operator. A classical monomodal grammar and a standard
polymodal grammar are generated by the following, respectively:

• ϕ := p | ¬ϕ | ϕ ∨ψ | ∇ϕ, for ϕ ∈L∇(Φ);

• ϕ := p | ¬ϕ | ϕ ∨ψ | 31ϕ | 32ϕ | pt, for ϕ ∈L3(Φ).

For the standard polymodal language L3(Φ), a first-order correspondence language L 1
∇
(Φ) is gener-

ated from first-order variables x,y,z, . . ., unary predicates P0,P1, . . . for each propositional atom p0, p1, . . .∈
Φ, binary relation symbol(s) R1,R2, and a unary relation symbol Q. The set of propositional atoms is
constant, so we omit reference to Φ in the remainder.

3.1 The Common Core

First-order correspondence languages vary by the conditions imposed on the binary relations, and those
conditions are determined by the interpretation supplied to 31 and 32 in L3 by a standard poly-modal
Kripke frame. Similarly, a polymodal Kripke simulation within L3 of a monotonic modal logic ex-
pressed within L∇ will vary by the frame properties that determine 31 and 32 (and the nullary modalty,
pt), conditions which are imposed by the monotonic classical system M.S1, . . . ,Sn. Otherwise, the trans-
lation operations are homomorphic for non-modal formulas which we refer to as the common core.

To focus on this common core, consider two translation functions τ and t. Let F 3 be a polymodal
Kripke frame, which will be fully defined later for different classes of neighborhood models, and M =
(F 3,V ) a Kripke model based on F 3. Then, a translation τ between L∇ and L3 on the (non-modal)
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common core is given on the left:

L∇ to L3 L3 to L 1
∇

⊥τ =⊥ (⊥)t(w) = x 6= x

pτ = p, for p ∈Φ (p)t(w) = P(w)
(¬ϕ)τ = ¬(ϕτ) (¬ϕ)t(w) = ¬(ϕ t(w))

(ϕ ∨ψ)τ = (ϕτ) or (ϕτ) (ϕ ∨ψ)t(w) = ϕ
t(w)∨ψ

t(w).

The right hand side of this table specifies the local translation t between L3 and L 1
∇

for the common
core. Here the unary predicates Pi ∈L 1

∇
are interpreted by their corresponding propositional variables

pi ∈Φ as follows: M
w pt = P(w) expresses that p is satisfied at world w in model M, and this assertion

is translated into first-order logic by P(w). We write pt(w) to abbreviate M
w pt = P(w), and ¬(pt(w))

to abbreviate 6M
w pt .

Discussion: Intuitively, (ϕ)t translates the assertion that ϕ is satisfied at a world within a model.
To translate that ϕ is valid with respect to a class of models, a global translation function translates
the assertion that ϕ is satisfied at all worlds with respect to that class of models. We now consider
conditions for constructing first-order correspondents for various common systems of monotonic modal
logic, including conditions for global translations.

3.2 Supplemented models

Supplemented models have been studied extensively, and much is now known about simulation and
correspondence for monotone modal logics Hansen (2003).

Expand the translation function τ between L∇ and L3 to cover modal formulas in supplemented
models is achieved by defining a bi-frame for the language L32 , following Gasquet and Herzig (1996),
where here the modal indices are replaced by mnemonic symbols. Define a bi-modal Kripke frame
F 3 = (W ∪℘(W ),RN ,R3,pt). The neighborhood function N ∈ F is represented within F 2 by:

RN = {(w,X) ∈W ×℘(W ) | X ∈N (w)},
R3 = {(X ,w) ∈℘(W )×W | w ∈ X},
pt = W.

Then, adding equation (1) to the τ-common core L3 (i.e., L3m) yields a truth preserving translation
between the class of supplemented models Mm and standard bi-modal modal Kripke models based on
the class of frames F 2 Gasquet and Herzig (1996), Kracht and Wolter (1999).

(∇ϕ)τ = 3N 23(ϕ)τ (1)

A frame-validity preserving translation � between L∇e and L3 is defined by ϕ� = pt→ ϕτ .
Discussion: From the satisfiability conditions for ∇ and

∇

, we can view the monotonic neighborhood
function N to be comprised of two different types of relationships, each represented by a diamond
modality. The first, 3N , expresses when a set of worlds is within the neighborhood associated with a
world w, and the second, 33, expresses when w is within a set of worlds. Finally, since the accessibility
relations for these two modalities range over worlds and sets of worlds, i.e., W ∪℘(W ), the 0-arity modal
constant pt is used to denote the worlds w ∈W .

Turning to the translation function t between L3 and L 1
∇

, adding equation (2) to the t-common
core L 1

∇
(i.e., L 1

∇m) yields a local truth preserving translation between standard bi-modal Kripke models
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simulating the class of supplemented neighborhood models and the first-order correspondence language
L 1

∇m .

(∇ϕ)t(w) = ∃x(RN wx∧∀y[R3xy→ ϕ
t(y)]), (2)

where Riab abbreviates (a,b) ∈ Ri.
Finally, the global translation T between L∇e and L3 defined by (ϕ)T (w) = ∀w(Q(w)→ (ϕ)t(w))

preserves frame validity.
Discussion: By quantifying over subsets of worlds, frame validity expresses a second-order property

which does not always admit expression by a first-order formula. In Kracht (1993), Kracht and Wolter
(1999) it was observed that a particular class of classical modal formulas in language L∇, interpreted
over bi-modal Kripke structures, correspond to Sahlqvist formulas, for which Salvqvist correspondence
holds via the Sahlqvist-van Benthem algorithm. This technique was extended to monotonic modal logic
by Marc Pauly in an unpublished manuscript, which is described in Hansen (2003). As will be seen in
the discussion of minimal models, this result can be applied to some but not all classical modal systems.

3.3 Minimal models

Minimal models are the most general class of neighborhood models; this class determines system (E).
To expand the translation function τ between L∇ and L3 with respect to F 3, adding equation (3)

to the τ-common core yields a truth preserving translation between the class of minimal models Me and
standard polymodal modal Kripke models based on the class of frames F 3 Gasquet and Herzig (1996).

(∇ϕ)τ = 3N (23(ϕ)τ ∧2N (ϕ)τ) (3)

Turning to the translation function t between L3e and L 1
∇e , currently results are limited. This is because

the language L∇ local translation, equation 4, is not a Sahlqvist formula.

(∇ϕ)t(w) = ∃x(RN wx∧ [∀y(R3xy↔ ϕ
t)]) (4)

Since supplemented models are just the class of minimal models in which all instances of (M) are valid,
the correspondence results from monotonic modal logic apply. But it is an open question precisely
what the classical modal fragment is beyond Pauly’s identification of the monotonic modal fragment as
the monotonic bisimulation invariant fragment mentioned above; the monotonicity condition of supple-
mented models is critical in the construction. Recent work has focused on developing an alternative
correspondence theory based on a topological semantics ten Cate et al. (2009).

3.4 Quasi-filters & augmented models

The list of modal schemata in the previous section are divided into two families, each sound and strongly
complete with respect to their associated frames. Let M+S be a propositional monotonic modal system,
S a modal schema, then:

1. If S ⊆ {N,C,T,4′,B,D}, and S′ ⊆ {P,4,5}, then MS and MS’ is sound and strongly complete
with respect to the class of monotonic L3 polyframes defined by S and S’, respectively.

2. MS∪S′ is not necessarily sound and strongly complete with respect to the class of monotonic L3

polyframes defined by all formulas in S∪S′ Hansen (2003).

Finally, the class of monotonic L∇ polyframes satisfying condition (c) is defined by the class of
supplemented models in which all instances of (C) are valid, and the class of L∇ bi-frames satisfying
both (c) and (n) is defined by the class of supplemented models in which all instances of (C) and (N) are
valid. The former are the class of quasi-filters; the latter the class of augmented models.
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4 AGM

To define AGM revision on this family of correspondence languages we adapt a strategy for normal
monomodal logic Gabbay et al. (2008) that requires (i) a sound and complete axiomatization of each
classical modal system, (ii) a classical AGM revision operator.

Recall the AGM postulates for the revision operator, ∗, where K =Cn(K), and ϕ , ψ are propositional
formulas: (K∗1) K ∗φ is a belief set; (K∗2) φ ∈ (K ∗φ); (K∗3) (K∗φ)⊆Cn(K∪{φ}); (K∗4) If ¬φ 6∈K,
then Cn(K∪{φ})⊆ (K∗φ); (K∗5) (K∗φ) = L PL only if φ ≡⊥; (K∗6) If φ ≡ψ , then (K∗φ)≡ (K∗ψ);
(K∗7) K ∗ (φ ∧ψ)⊆Cn((K ∗φ)∪{ψ}); (K∗8) If ¬ψ 6∈ (K ∗φ), then Cn((K ∗φ)∪{ψ})⊆ K ∗ (φ ∧ψ).

The correspondence language essentially maps the satisfiability conditions of modal formulas into
corresponding first-order predicates along with additional first-order formulas that express the corre-
sponding neighborhood frame conditions. Thus, the closure operator Cn is held constant: it is Tarski’s
classical consequence operator. The arguments are the first-order translations of modal formulae along
with additional formulas needed to characterize the frame properties of a modal system.

Turn to the definition of AGM revision in EM. Let Λt(w) be the first-order local translation into L 1
∇

of a classical monotonic modal theory, φ t(w),ψ t(w) first-order local translations of classical monotonic
modal formula, and NM.S the (possibly empty) first-order characterization of classical monotonic modal
system M.S. Then:

Λ∗m ψ = {φ : Λ
t(w)∗ (ψ t(w)∧NM.S) ` φ

t(w)}.

We now have the following result. Proof is in the appendix.

Theorem 4.1. The operator ∗m is an AGM operator.

This theorem states that AGM revision is definable on the most general monotonic modal fragment
of first-order logic. There are two families of revision operators for monotone modal logic, which we
may generalize.

Corollary 4.2. For systems of monotonic modal logic EM.S or EM.S′, for any S ⊆ {N,C,T,4′,B,D},
and any S′ ⊆ {P,4,5}, there exist operators ∗m.s and ∗m.s′ that are AGM, but not necessarily for ∗m.s∪s′ .

This corollary tells us that modal revision operators within the two families S and S′ preserve the
corresponding modal logic. This is because NM.S is the first-order expression of the neighborhood frame
properties that characterize the corresponding modal system M.S, which remain in the revised modal
theory by (K∗2).

5 An Application

One application is to interpret the necessity operator ∇ as ‘qualitative judgment of high likelihood’ in
system (EMN) Arló-Costa (2005) in general, or as qualitative judgments of high evidential probability
in particular Kyburg and Teng (2002). In the case of evidential probability (EP), probability is assigned
to a sentence based upon both logical and probabilistic information—and there is a small chance that
each item of evidence is accepted in error. But, some evidence sets containing an error are better than
others, which is to say that some evidence for a statement is more robust than other evidence. To assess
robustness of an EP assignment to a statement, one needs to look at a set of counter-factual EP proba-
bility assignments Haenni et al. (2010) to measure the variation in probability assignments when various
items of evidence are excluded because false. A counterfactual evidence set (relative to a statement) is
determined by the contraction operator .−mn defined by the Harper Identity Harper (1977), Gärdenfors
(1988) with respect to ∗mn.
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6 Limits to the Approach

The main bottleneck in this approach is the absence of a complete first-order correspondent for classical
modal logic. But, even if we did know the first-order classical modal fragment, it is likely that this
fragment would not cover all of classical modal logic. More is known about simulation, but even bimodal
simulations would not yield a complete AGM theory for classical modal systems. Alternatively, AGM
might apply directly to a suitably abstract notion of classical modal consequence, but this would require
adapting AGM for a quantified language.

This said, the result should not be under-appreciated for it opens the study of belief change for a
variety of non-adjunctive frameworks. In addition, the general technique holds promise for importing
other capabilities into monotone modal systems.

7 Appendix

Proof of Theorem 4.1 The operator ∗m is an AGM operator for the smallest monotonic logic, EM
Let Λ be an EM-consistent monotonic modal theory, and φ ,ψ and γ sentences in L∇. We show that

∗m satisfies the AGM postulates. First, observe that M is the smallest classical monotonic modal system,
which is equivalent to EM.S, where S = /0. Hence, NM.S = /0.

1. (Λ∗1): Λ∗m φ is a belief set.

Since Λt(w)∗ (φ t(w)∧NM.S)) is closed under ` by (K∗1), then Λ∗m φ is closed under `EM.

2. (Λ∗2): φ ∈ (Λ∗m φ).

From (K∗2) we have φ t(w)∧NM.S ∈ Λt(w)∗ (φ t(w)∧NM.S. Since Λt(w)∗ (φ t(w)∧NM.S)
is closed under `, by (K∗1), and ` is reflexive, then Λt(w) ∗ (φ t(w)∧NM.S) ` φ t(w). So,
φ ∈ (Λ∗m φ) by (Λ∗2).

3. (Λ∗3,4): If sentence φ is EM-consistent with Λ, then Λ∗m φ is equal to the closure of {Λ∪{φ}}
under `EM, written Cm(Λ∪{φ}).

First we make the following two observations.
Observation 1. Recall that if Λ is an EM-consistent modal theory, then Λ 6`EM ⊥ and there
exists a monotone neighborhood model for Λ.
Observation 2. If Λ∪{φ} is consistent with respect to classical modal logic EM, then Λt(w)
is classically consistent with respect to its translation, φ t(w)∧NM.S. Since by hypothesis
Λ∪ {φ} has a monotone neighborhood model, by Observation 1, there exists a classical
first-order model of its translation, Λt(w)∪{φ t(w)∧NM.S}.
Suppose that Θ denotes the classical provability closure of the first-order translation from
Observation 2, Λt(w)∗(φ t(w)∧NM.S). We now show that if ψ t(w) ∈Θ, then Λ∗mφ ` ψ .

Suppose that Cm(Λ) is Λ closed under `EM and Λt(w) is the first-order translation of Λ. We
denote the corresponding NM.S-simulated closure in classical logic of the first-order transla-
tion by Cn(Λt). There are two parts.

(a) First, for any γ ∈NM.S, if γ t ∈Cn(Λt), then γ ∈ Λ. To see this, notice that Cm(Λ) is a
maximally EM-consistent set, so γ ∈Cm(Λ) iff Λ `EM γ .
Proof : Suppose that γ 6∈ Λ. Then, there is a classical monotone model satisfying Λ∪
{¬γ} and a translation of this into first-order logic. But on the first-order model for this
translation γ t 6∈Cn(Λt), which falsifies the hypothesis.
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(b) Second, for a closed classical theory Cn(Λt) s.t. NM.S ⊆Cn(Λt) and {γ : γ t ∈ Λt}, then
Λ ` γ only if γ t ∈Cn(Λt).
Proof : Suppose that γ t 6∈ Cn(Λt). Then there is a model of Λt ∪ {¬γ t}, so there is
classical monotone model satisfying Λ∪{¬γ} which falsifies the hypothesis.

This concludes the proof of ( ∗3,4).

4. (Λ∗5): Λ∗m φ = L∇ only if φ ≡⊥.

Since Λ is an EM-consistent modal theory, Λ 6= L∇. So Λt(w) 6= L 1
∇
. So if Λt(w)∗φ t(w) =

L 1
∇
, then φ t(w) =⊥; thus φ ≡⊥.

5. (Λ∗6): If `EM φ ≡ ψ , then Λ∗m φ ≡ Λ∗m ψ .

If `EM φ ≡ ψ , then ` φ t ∧NM.S) ≡ ψ t ∧NM.S. So, by (K∗6), Λ ∗ (φ t ∧NM.S) ≡ Λ ∗ (ψ t ∧
NM.S). Therefore, Λ∗m φ ≡ Λ∗m ψ .

6. (Λ∗7,8): Λ∗m (φ ∧ψ) = Cm((Λ∗m φ)∪{ψ}), when ψ is EM-consistent with Λ∗m φ).

Now we proceed in two parts.

(a) Λ∗m (φ ∧ψ)⊆Cm((Λ∗m φ)∪{ψ}): By (Λ∗1), Λ∗m (φ ∧ψ) = Cm(Λ∗m (φ ∧ψ)). Suppose
that γ ∈ Cm(Λ ∗m (φ ∧ψ)). Then by the correspondence theorem γ t ∈ Cn(Λt ∗ (φ t ∧ψ t ∧
NM.S)). So γ t ∈ Cn(Λt ∗ (φ t ∧NM.S)∪{ψ t}), by (K∗7), and γ ∈ Cm((Λ ∗m φ)∪{ψ}), by
correspondence. Since γ is an arbitrary modal formula, Λ∗m (φ ∧ψ)⊆Cm((Λ∗m φ)∪{ψ}).

(b) Cm((Λ∗m φ)∪{ψ})⊆Λ∗m (φ ∧ψ): Suppose that γ ∈Cm(Λ∗m φ). Since γ is EM-consistent
with Λ ∗m φ), γ ∈ Cm((Λ ∗m φ)∪ {ψ}). Thus, γ t ∈ Cn(Λt ∗ (φ t ∧NM.S)∪ {ψ t}), by the
correspondence theorem, and γ t ∈ Cn(Λt ∗ (φ t ∧ψ t ∧NM.S)), by (K∗8). So, γ ∈ Cm(Λ ∗m
(φ ∧ψ)), by correspondence. Since γ is an arbitrary modal formula, Cm((Λ∗m φ)∪{ψ})⊆
Λ∗m (φ ∧ψ).
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