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Abstract. Statistical Default Logic (SDL) is an expansion of classical
(i.e., Reiter) default logic that allows us to model common inference
patterns found in standard inferential statistics, e.g., hypothesis testing
and the estimation of a population‘s mean, variance and proportions.
This paper presents an embedding of an important subset of SDL theo-
ries, called literal statistical default theories, into stable model semantics.
The embedding is designed to compute the signature set of literals that
uniquely distinguishes each extension on a statistical default theory at a
pre-assigned error-bound probability.

1 Introduction

Standard statistical inference is non-monotonic. Parameters of a target popula-
tion may be estimated by measures taken on a sample that, after testing for bias,
serve as a defeasible estimate of the population’s corresponding parameters. For
example, we may estimate the age of a population by identifying the mean age
of a representative sample drawn from the population. However, classifying a
sample as representative is not straightforward since knowing that a sample is
representative is to be in the position of not needing to use inferential statistics.

The fit between a statistic and a target parameter is defeasible because a
sample, however carefully selected, may fail to be representative of the target
population. Consider the estimation of a population’s mean age. Textbooks ad-
vise that drawing a sample at random is a good procedure for selecting repre-
sentative samples [2],[12],[8]. But of course drawing a sample at random does
not guarantee that it is representative. Suppose a random sample selects only
subscribers to Rolling Stone, a magazine covering popular culture catering to
young adults. Suppose also that the population whose age we are interested in
estimating is of a particular medium-sized city. Our background knowledge con-
cerning the constitution of cities would make us suspect that the sample we’ve
drawn does not give us a close estimate of the city’s mean age even though the
sample was drawn at random.

In [7] it was shown that key assumptions employed in standard inferential
statistical practice, such as the random sampling assumption, actually function
like default justifications. In [16] an expanded default logic, called statistical de-
fault logic, was introduced to capture the defeasible structure of basic statistical



inference. The resulting logic provides a knowledge representation framework
for representing standard statistical argument forms and sequences composed of
statistical and deductive inference steps.1

In this paper we present an embedding of an important fragment of statistical
logic into answer-set programming. The structure of the paper is as follows. First
we will present a brief motivation for statistical default logic from a knowledge
representation point of view, highlighting the structural similarity between a
standard statistical inference and statistical default inference forms. Next we will
present an example of a statistical default extension. (Refer to [16] for details.)
We then present an embedding of a fragment of statistical default logic into
answer-set programming. This embedding faithfully captures the central and
new notion in statistical default logic, namely that of terminating admissible
inference sequences at a specified threshold level. Finally, we highlight the novelty
of these results by comparing them to existing probabilistic logic programming
frameworks.

2 Representing Statistical Inference within Statistical
Default Logic

We assume here familiarity with classical default logic [15]. Statistical default
logic [16] extends classical default logic by associating with each element in a
default theory, both formulae from a propositional language and defaults, a real
number 0 ≤ ε ≤ 1 called an error-bound parameter.

A statistical default is an inference form that explicitly acknowledges the
upper limit of the probability of applying that default rule and accepting a false
statement.2

Definition 1. A statistical default is an ordered pair consisting of a classical
propositional default in the first coordinate an error bound parameter ε in the
second coordinate, displayed as

α : β1, ..., βn

γ
ε. (1)

Expression (1) is called an ε-bounded statistical default (s-default, for short),
where ε expresses the upper limit on the probability of applying (1) and accepting
that γ is true when γ is false. We say that the error-parameter ε is an ε-bound
for the s-default displayed in expression (1).

The logic also replaces sentences in the propositional language with sentence-
ε pairs, called bounded sentences.
1 Representing statistical argument forms by defaults is distinct from [1], which studied

the representation of statistical statements rather than statistical inference.
2 A trivial corollary of the probability of error α̂ for a statistical inference is the upper

limit of the probability of error, denoted by ε. So, if α̂ = 0.03 is understood to mean
that the probability of committing a Type I error is 0.03, then ε = 0.03 is understood
to mean that the probability of committing a Type I error is no more than 0.03.



Definition 2. Bounded sentence: A sentence φ bounded by ε is an ordered pair
〈φ, ε〉, written (φ)ε for short, where φ is a sentence in the propositional language
L and ε ∈ [0, 1]. (φ)ε ≡ φ, if ε = 0.

Whereas a classical default theory ∆ = 〈F,D〉 consists of a set F of first-
order formulae and a countable set D of defaults, a statistical default theory
∆s = 〈W,S〉 is defined as a pair consisting of a set W of bounded sentences and
a set S of statistical defaults.

Note that a Reiter default is a special case of an s-default, namely when
ε = 0 and classical default logic is a special case of statistical default logic,
namely when the ε-bound of every bounded sentence and every s-default is zero.
We refer readers to [16] for the main results of statistical default logic.

Following [7], we demonstrate how to use an s-default to represent the key
structural features of an inference of the mean age of a population, X. This
problem is an instance of an inference of the mean of a normal distribution
when the standard deviation is known. Suppose we draw a sample s on X and
calculate the mean age of s, s = 24 years. It is reasonable for us to infer that
the mean age of X is in the interval 288 months (24 years) ±1.96σ, where σ is
the standard deviation of age in months derived from the cardinality of s. Given
the s-default rule schemata (α : β1, ..., βn/[ε]γ), we may suppose that

α : The calculated mean age of s is 288 months ∧Measurement errors
are distributed normally with mean zero and variance σ2.

γ : The age of X is within two standard deviations of 288 months.
β1 : This is the only statistic we have for X.
β2 : There is no prior statistical knowledge of the distribution of age

in the class that s belongs to that would lead to a conflicting inference.
β3 : There is no information concerning the condition of the sample

that preëmpts the information provided by the calculation of s.
ε = 0.05.

Notice that we could collect additional statistics of the age of X and undermine
the conclusion drawn from this rule. Surely if we have two statistics, we should
use a distribution for the average of the two values (in most cases) and that uses
a smaller variance.

Whether this, or one of the other justifications β1, ..., β3 is triggered does not
undermine the prerequisite. It remains the case that the calculated mean age
of s is 288 months and that the distribution of errors is normal, with a mean
of zero and its characteristic variance. It is the consequent, the conclusion that
claims that the mean age of the population X is 288 months ±2σ months, that
is blocked. Notice that it is blocked when we have additional not necessarily
non-contrary information.

Justification β2 says that if there is prior statistical information regarding the
mean age of X, then that information should take precedence over any conclusion
drawn from the measurement report. For instance, if we are dealing with a popu-
lation with known descriptive statistics (e.g., given by a census), this knowledge



should be taken account of: we typically would not infer that the estimate based
upon s supersedes the census description of X, for suitably small populations
not affected by data recording errors. If we already have knowledge of the age
of X this knowledge should block the application of this particular default rule.

The last default, β3, concerns general conditions that should be in place to get
a good estimation of the population’s mean age. For instance, if the sampling
procedure is carried out from a direct-mail advertiser’s database, we should
ensure that the database is not biased with respect to age. We don’t accept this
as an explicit assumption, since s belongs to infinite reference classes. Rather, if
we know that s is a member of a biased class with respect to age—such as readers
of Rolling Stone—we have grounds to block the application of the default. The
point isn’t that knowing all members of s are Rolling Stone readers entails that
s fails to be representative, but that knowing that s is drawn exclusively from
the class of Rolling Stone readers is sufficient to doubt that the statistical model
fits—that is, there is reason to doubt that s is an estimate of X within two
standard deviations of the true mean age of the population.

3 Statistical Default Extensions

Extensions for statistical default logic are constructed in the usual way, except
that the operator ‘terminates’ when inference reaches a specified threshold and
a function Crop() is called on the resulting set of bounded sentences, returning
the set of wffs without their corresponding ε-bound. For details the reader is
referred to [16].

Consider the following two examples.

Example 1. Let ∆1
s = 〈W,S1〉 be a statistical default theory, where W = ∅ and

S1 contains four s-defaults:

S1 =
{

:A
A 0.01, :B

B 0.01,A:B,C
C 0.01,A∧B:¬C

¬C 0.01
}

For an error-bound parameter ε1 = 0.02, there is one statistical default ex-
tension Π1 where Crop(Π1) contains

A,B, A ∧B,C.

The bounded sentence A at εA is included in extension Π1 by applying the
default :A

A and bounded sentence B at εB is included by applying the default
:B
B , where each inference has an error bound of 0.01, so (A)0.01 and (B)0.01.
(A ∧ B)εA∧B

is included in the extension, since the sum of the error bounds of
conjoining A and B is 0.02, that is (A ∧B)0.02. The bounded sentence C at εC

is included by using A, whose error bound is 0.01, to apply the default A:B,C
C ,

whose error bound is also 0.01. Hence (C)0.02. The default A∧B:¬C
¬C cannot be

applied because the resulting conclusion ¬C would have an error bound of 0.03,
(¬C)0.03 which is above the designated threshold ε1 = 0.02.



For a threshold parameter ε2 = 0.03, there are two statistical default ex-
tensions: Π1, which is the same as described above, and Π2, where Crop(Π2)
contains

A,B, A ∧B,¬C.

The default rule that could not be applied before is now applicable with respect
to ε2, giving rise to the second extension Π2.3

Example 2. Now let ∆2
s = 〈W,S2〉 be a statistical default theory, where W = ∅

and S2 contains six s-defaults:

S2 =
{

:¬B,C
C 0.00, :C

C 0.02, C:B
B 0.01, :¬B

¬B 0.03, :¬B,A
A 0.01, :¬A

¬A 0.01
}

For an error-bound parameter ε1 = 0.02, there is no statistical default extension,
since while both :¬B,C

C 0.00, :C
C 0.02 yield C only the bounded sentence 〈C, 0.00〉

from :¬B,C
C 0.00 may be substituted for the antecedent of C:B

B 0.01 which in turn
is applicable in extensions consistent with B. But :¬B,C

C 0.00 is applicable only
in extensions consistent with ¬B.

For an error-bound parameter ε2 = 0.03, there are three extensions. We will
continue the convention of example 1 of distinguishing them by focusing on the
literals of each extension; this will also serve our purposes in the remainder of
the paper. However, because this example highlights the role that error-bounds
play in constructing extensions we will display the extensions first in uncropped
form, then in cropped form.

Π1 ⊇ {〈C, 0.00〉, 〈C, 0.02〉, 〈¬B, 0.03〉, 〈A, 0.01〉}
Π2 ⊇ {〈C, 0.00〉, 〈C, 0.02〉, 〈¬B, 0.03〉, 〈¬A, 0.01〉}
Π3 ⊇ {〈C, 0.02〉, 〈B, 0.01〉, 〈¬A, 0.01〉}

And the three corresponding cropped extensions are:

Crop(Π1) ⊇ {C,B,A}
Crop(Π2) ⊇ {C,¬B,¬A}
Crop(Π3) ⊇ {C,B,¬A}

We may think of each of these sets of literals as signatures of their corresponding
statistical default extensions. In what remains we propose an implementation
of statistical default logic that computes the signatures of each extension of a
statistical default theory.

3 The complete cropped extensions Π1, when ε = 0.02, Π1 and Π2, when ε = 0.03,
are as follows: Π1

ε=0.02 = {A, B, A∧B, C}; Π1
ε=0.03 = {A, B, A∧B, C, A∧C, B∧C};

Π2
ε=0.03 = {A, B, A ∧B,¬C}.



4 Computing Statistical Default Extensions

In this section we describe an embedding of an important subset of statistical
default theories into stable model semantics [6]. This embedding is designed to
compute the signatures of each statistical default extension. Resorting to the
available engines for computing Stable Model and Answer Set engines [14],[4]
we indirectly provide an efficient implementation of statistical default logic. We
start by recalling the Stable Model semantics of Gelfond and Lifschitz [5].

A (normal) logic program is a set of rules4 of the form:

h : − a1, . . . , am, not am+1, . . . , not an

where h, and ai(0 ≤ i ≤ n) are atoms of a given first-order language. Atom h
is the head of the rule, whilst a1, . . . , am, not am+1, . . . , not an is the body. We
say that not aj is a default negated atom. A fact is a rule with an empty body
and is succinctly represented by h. A rule with free variables stands for all its
ground instances.

Definition 3. Let P be a (ground) normal logic program and M a set of ground
atoms in the language of P (i.e. a subset of the Herbrand base of P ). The reduct
PM is the default negation free program obtained from P by:

1. Removing all rules of P having a default negated atom not a in the body such
that a ∈M .

2. Removing all occurrences of default negated atoms in the bodies of the re-
maining rules.

The set M is a stable model of P iff M is the least Herbrand model of PM .

The Answer Set Semantics [6] generalizes the Stable Model Semantics for the
so called extended logic programs. Extended logic programs consist of rules:

l : − l1, . . . , lm, not lm+1, . . . , not ln

where l and lis are literals, i.e. atoms (say, a) or the explicit negation of atoms
(say, ¬a). The semantics is given now by special sets of ground literals, the
answer sets, extending Definition 3. The reduct operation for extended logic
programs is defined similarly, but the fixpoint equation must be changed to take
into account that the reduct program is no longer a Horn program. Essentially,
it interprets a explicit negated literal ¬a as a new atom, unrelated to a, and the
least model is computed as before. A special condition is then added to treat
the case of the set of all literals. The reader is referred to [6], [11] for details.

The relationships of stable model and answer set semantics with default logic
are very well understood. See for instance [11] for a full account. In the rest of
this section we extend the existing results to statistical default logic in order to
4 We use : − instead of ← in order to respect the syntax used in the existing imple-

mentations.



compute statistical default extensions via stable model logic programming en-
gines. A first difficulty lies in the impossibility of representation of real numbers.
Furthermore, the existing implementations have support only for arithmetic over
the natural/integer numbers. The following condition allows the translation of
the arithmetic operations over real numbers into corresponding operations over
natural numbers:

Definition 4. Let p be a non-zero natural number. A statistical default theory
∆s = 〈W,S〉 is precision limited by p, if every error bound ε in W and S is a
rational number ε = e

p , for some natural number e such that 0 ≤ e ≤ p.

We cannot translate arbitrary statistical default theories, due to the difficul-
ties of handling statistical inferences with disjunctive formulae with the proposed
embedding. Thus, we restrict ourselves to the following types of theories:

Definition 5. A literal statistical default theory is a statistical default theory
∆s = 〈W,S〉 such that:

1. Every bounded sentence in W is of the form 〈l, ε〉, where l is a literal.
2. Every statistical default in S is of the form

l1 ∧ . . . ∧ lm : j1, ..., jn

c
ε

where l1, . . . , lm, j1, . . . , jn and c are all literals.

Before we proceed, we require the following auxiliary notation. Given a lit-
eral l = a(t1, . . . , tm) or l = ¬a(t1, . . . , tm), by l[e] it is meant, respectively, the
new atom a(t1, . . . , tm, e) or neg a(t1, . . . , tm, e). This function adds a new argu-
ment for propagation of error-bounds, and introduces a new predicate name for
negated atoms. Similarly, by crop(l) we mean the new atom crop a(t1, . . . , tm)
or crop neg a(t1, . . . , tm).

Definition 6. Consider the literal statistical default theory ∆s = 〈W,S〉 pre-
cision limited by p. Construct the logic program P∆

s (error, p) as follows, where
error ≤ p is a natural number such that:

1. A bounded sentence 〈l, ε〉 in W is translated into the fact:

l[0].

2. For every literal l in the language add the rule

crop(l) : − l[E].

3. Every statistical default in S of the form

: j1, ..., jn

c
ε

is translated into the rule, where eps = ε× p:

c[eps] : − eps <= error, not crop(¬j1), . . . , not crop(¬jn).



4. Every statistical default in S of the form

l1 ∧ . . . ∧ lm : j1, ..., jn

c
ε

is translated into the rule:

c[Am] : − l1[E1], . . . , lm[Em],
A1 = eps + E1, . . . , Am = Am−1 + Em, Am <= error,
not crop(¬j1), . . . , not crop(¬jn).

where eps = ε× p, and E1, . . . , Em and A1, . . . , Am are new free variables.

Complete the program P∆
s with the following closure rules, for every combination

of atoms a and b in the language:

a[E] : − b[E1],¬b[E2], E = E1 + E2, E <= error.
¬a[E] : − b[E1],¬b[E2], E = E1 + E2, E <= error.

For simplicity, we assume that the sum operation, as well as the equality and
arithmetic comparison predicates are built-in. Theoretically, this can be captured
by an infinite set of ground facts of the form X = Y +Z , such that variables are
substituted by natural numbers x, y, z obeying the equation; the same applies
to facts of the form X <= Y , where X and Y are instantiated with two natural
numbers x ≤ y.

The translation is self-explanatory. The first case takes care of the theory
W ; by design of statistical default logic, it is assumed that the knowledge W
is considered to be error free. The rules introduced in the 2nd step implement
the crop operation. The translation of statistical defaults is now immediate,
where error-bounds are propagated from the bodies to the head of rules, taking
into account the global threshold error and the error-bound of the default. The
justifications are translated into default negations of the complements, as usual in
the relationships of default logic with answer set semantics. The last sets of rules
encode the explosive behavior of statistical default logic in face of contradiction,
which differs from the one of Answer Set Semantics. The major result is the
following:

Theorem 1. Consider a literal statistical default theory ∆s = 〈W,S〉 with error-
bound parameter ε, and precision limited by p, and let error = ε×p be a natural
number. Then, a set of ground literals {l1, . . . , li, . . .} is contained in Crop(Π),
where Π is a statistical default extension Π of ∆s, iff there is a stable model of
program P∆

s (error, p) containing {crop(l1), . . . , crop(li), . . .}.

By resorting to the known translation of extended logic programming under
the answer set semantics into default logic [11] and the relationship of statistical
default logic with Reiter’s default logic we obtain the following corollary:

Corollary 1. Let P be a extended logic program and construct the statistical
default theory ∆P = 〈∅, S〉 by including in S a default

l1 ∧ . . . ∧ lm : ¬lm+1, ...,¬ln
l

0.0



for each rule
l : − l1, . . . , lm, not lm+1, . . . , not ln

in the extended logic program. Then, M is an answer set of P iff Π is a statistical
default extension of ∆P such that Cn(M) = Crop(Π), where Cn is the first-
order consequences operator.

We conclude by illustrating the embedding:

Example 3. Consider the theory of Example 1 with error-bound threshold of
0.03, and precision limited by 100. The translated normal logic program is:

crop a :- a( ).
crop b :- b( ).
crop c :- c( ).
crop neg a :- neg a( ).
crop neg b :- neg b( ).
crop neg c :- neg c( ).

a(1) :- 1 <= 3, not crop neg a.
b(1) :- 1 <= 3, not crop neg b.

c(A1) :- a(E1), A1 = 1 + E1, A1 <= 3,
not crop neg b, not crop neg c.

neg c(A2) :- a(E1), b(E2),
A1 = 1 + E1, A2 = A1 + E2, A2 <= 3, not crop c.

a(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
neg a(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
a(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
neg a(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
a(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.
neg a(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.

b(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
neg b(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
b(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
neg b(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
b(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.
neg b(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.

c(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
neg c(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
c(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
neg c(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
c(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.
neg c(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.



The stable models of the above program are:

{a(1), b(1), neg_c(3), crop_a, crop_b, crop_neg_c}

{a(1), b(1), c(2), crop_a, crop_b, crop_c}

which correspond exactly to the signature statistical default extensions of Ex-
ample 1.

Example 4. Consider the theory of Example 2 with error-bound threshold of
0.03, and precision limited by 100. The translated logic program is:

crop a :- a( ).
crop b :- b( ).
crop c :- c( ).
crop neg a :- neg a( ).
crop neg b :- neg b( ).
crop neg c :- neg c( ).

a(1) :- 1 <= 3, not crop b, not crop neg a.
neg a(1) :- 1 <= 3, not crop a.

b(A1) :- c(E1), A1 = 1 + E1, A1 <= 3, not crop neg b.
neg b(3) :- 3 <= 3, not crop b.

c(0) :- 0 <= 3, not crop b, not crop neg c.
c(2) :- 2 <= 3, not crop neg c.

a(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
neg a(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
a(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
neg a(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
a(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.
neg a(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.

b(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
neg b(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
b(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
neg b(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
b(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.
neg b(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.

c(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
neg c(E) :- a(E1), neg a(E2), E = E1 + E2, E <= 3.
c(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
neg c(E) :- b(E1), neg b(E2), E = E1 + E2, E <= 3.
c(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.
neg c(E) :- c(E1), neg c(E2), E = E1 + E2, E <= 3.



The stable models of the above program are:

{neg_a(1), neg_b(3), c(0), c(2), crop_neg_a, crop_neg_b, crop_c}

{neg_a(1), b(3), c(2), crop_neg_a, crop_b, crop_c}

{a(1), neg_b(3), c(0), c(2), crop_a, crop_neg_b, crop_c}

which correspond exactly to the signature statistical default extensions of Ex-
ample 2.

5 Comparisons

Literal statistical default theories have interesting connections to existing prob-
abilistic logic programming frameworks, namely the Stable Semantics for Prob-
abilistic Deductive Databases [13]. A default l1∧...lm:j1,...,jn

c ε, with ε < 1 in a
literal statistical default theory can be translated into a general probabilistic
logic program of Ng and Subrahmanian [13] of the form5:

eps: [1− ε, 1]←
prereq: [V, 1] ← (eps ∧ l1 ∧ . . . ∧ lm): [V, 1]
c: [V, 1] ← prereq: [1− error, 1]

∧
prereq: [V, 1]

∧
not ¬j1 : [1− error, 1]

∧
. . .

∧
not ¬jn : [1− error, 1]

Note that V is an annotation variable, and error is the fixed error-bound thresh-
old parameter. The translation of the closure rules is immediate and there is no
need to introduce crop sentences, since this is already accommodated in the tests
not ¬ji : [1− error, 1] and prereq: [1− error, 1].

The translation is justified by the observation that a literal l with error-bound
ε is equivalent to saying that the probability of l is in the interval [1− ε, 1]. Now,
if the error-bound of a literal l1 (resp. l2) is ε1 (resp. ε2) this means that the
probability of l1 is between [1 − ε1, 1] (resp. l2 between [1 − ε2], 1]). Thus the
probability of l1∧l2 is between [1−(ε1+ε2), 1], if ε1+ε2 ≤ 1. Now, the conjunction
symbol in (eps ∧ l1 ∧ . . . ∧ lm): [V, 1]) corresponds to the conjunctive ignorance
probabilistic strategy of Hybrid Probabilistic Logic Programs [3], which combines
the probability intervals [a1, b1] and [a2, b2] according to:

[a1, b1] ∧ [a2, b2] = [max(0, a1 + a2 − 1),min(b1, b2)]

By applying the ignorance strategy to the previous intervals for l1 and l2 we
obtain the expected result:

[1− ε1, 1] ∧ [1− ε2, 1] = [max(0, (1− ε1) + (1− ε2)− 1),min(1, 1)]
= [max(0, 1− ε1 − ε2), 1] = [max(0, 1− (ε1 + ε2), 1]

5 The authors use ¬ instead of not to represent default negation. We use here not in
order to avoid confusion with the previous translations.



It is now obvious that the framework of [13] is expressive enough to capture lit-
eral statistical default theories. However, the authors do not present in [13] any
translation into stable model semantics, which we have provided here. Further-
more, the more recent Hybrid Probabilistic Logic Programming framework [3]
does not provide a default negation construction and thus cannot embed literal
statistical default theories.

A translation of disjunctive logic programs with probabilistic semantics into
stable models is presented in [9], but assumes positively correlated interpreta-
tions, i.e. the probability of A∧B is given by the minimum of the probability of A
and the probability of B. Since SDL is intended to be quite general and therefore
adopts an ignorance strategy for combination, this framework does not appear
to be able to capture statistical default theories. Lukasiewicz also proposed an
approach for reasoning from statistical and subjective knowledge, based on the
combination of probabilistic conditional constraints with default reasoning [10],
but the relationships to our work remain to be studied.

6 Conclusions

In this paper we have presented an embedding of Literal Statistical Default
theories into stable model semantics. The embedding is designed to compute the
signature set of literals that uniquely distinguishes each extension on a statistical
default theory. We also offered a comparison of this work to existing probabilistic
logic programming frameworks, highlighting the new contribution of our results.6
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